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Gravel-bed clusters are themost prevalent microforms that affect local flows and sediment transport. A growing
consensus is that the practice of cluster delineation should be based primarily on bed topography rather than
grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital
elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the
short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly
from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual
grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range
DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-
scale bedforms,making the contour percentile levels of the long-rangeDEMauseful tool for cluster identification.
Individual clusters are delineated using the segmented grains and identified clusters via a range of contour per-
centile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing
contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest
particle in a cluster) increase with the contour percentile level. These results support the interpretation that
larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature
of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though
a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich
dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineatedwith dif-
ferent contour percentile levels exhibit similar planform morphologies. Comparisons with a compilation of
existing field data show consistency with the cluster properties documented in a wide variety of settings. This
study thus points toward a promising, alternative DEM-based approach to characterizing sediment structures
in gravel-bed rivers.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Gravel-bed rivers exhibit a wide variety of bedforms ranging in scale
from microforms (e.g., imbrication, cluster), mesoforms (e.g., transverse
rib, stone cell, step-pool, pool-riffle),macroforms (e.g., bar), tomegaforms
(e.g., floodplain, terraces) (Hassan et al., 2008). Among these, clusters
are the most prevalent microforms, observed to cover 10–50% of the
bed surface (Wittenberg, 2002; Papanicolaou et al., 2012). Clusters have
drawn much attention from river scientists and engineers due to their
impacts on: (1) local turbulence structures (Buffin-Bélanger and Roy,
1998; Lawless and Robert, 2001a; Lacey and Roy, 2007; Strom et al.,
2007; Hardy et al., 2009; Curran and Tan, 2014a; Rice et al.,
2014), (2) flow resistance (Hassan and Reid, 1990; Clifford et al., 1992;
Lawless and Robert, 2001b; Smart et al., 2002), (3) sediment transport
(Brayshaw et al., 1983; Brayshaw, 1984, 1985; Billi, 1988; Paola and
Seal, 1995; Hassan and Church, 2000; Strom et al., 2004), and (4) bed
stability (Reid et al., 1992; Wittenberg and Newson, 2005; Oldmeadow
and Church, 2006; Mao, 2012). Besides, clusters also provide insights
into the flow and sediment supply conditions of their formation
(Papanicolaou et al., 2003; Wittenberg and Newson, 2005; Strom and
Papanicolaou, 2009; Mao et al., 2011).

The term “clusters” was traditionally used by many researchers
to refer to the so-called “pebble clusters”, which normally comprise
three components: obstacle, stoss, and wake (Brayshaw, 1984). The
obstacle is a large clast providing an anchor for cluster formation;
upstream of the obstacle is an accumulation of smaller particles that
constitute the stoss zone; downstream of the obstacle is a wake zone
characterized by deposition of fine material. More recently, clusters
have been perceived more broadly to refer to “discrete, organized
groupings of larger particles that protrude above the local mean bed
level” (Strom and Papanicolaou, 2008; Curran and Tan, 2014a).
Using this broad working definition, researchers have identified cluster
microforms with a variety of shapes, such as rhombic clusters, complex
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clusters, line clusters, comet clusters, ring clusters, heap clusters, trian-
gle clusters, and diamond clusters (e.g., de Jong and Ergenzinger,
1995; Wittenberg, 2002; Strom and Papanicolaou, 2008; Hendrick
et al., 2010). Papanicolaou et al. (2012) used the areal fractal
(Hausdorff-Besicovich) dimensions of the projected areas to discrimi-
nate the planform morphologies of the clusters.

Although the broad definition of clusters has opened up new
avenues for recent progress in cluster research, to date identification
of clusters still relies largely on visual inspection (e.g., Entwistle
et al. 2008; Strom and Papanicolaou, 2008; Hendrick et al., 2010;
L'Amoreaux and Gibson, 2013). A set of predetermined criteria for
cluster identification are normally adopted in these studies. A typical
example is given here: (1) A cluster consists of a minimum number
of (e.g., 3 or 4) abutting or imbricated particles; (2) at least one
of these particles is an anchor clast greater than the specified grain
size (e.g., D50 or D84) of the bed surface; (3) a cluster protrudes above
the surrounding bed surface (e.g., Oldmeadow and Church, 2006;
Hendrick et al., 2010). As can be seen, specifying a minimum number
of constituent particles and a threshold grain size for anchor clast is
somewhat arbitrary and based on the rule of thumb. The subjectivity
of the “gestalt sampling” could produce operational bias. In particular,
researchers have found it extremely difficult to visually recognize
bed structures whose dimensions are of the same order of magnitude
as their spacing and the grain sizes of their constituent particles
(Entwistle et al. 2008; L'Amoreaux and Gibson, 2013).

In laboratory settings, identification of clusters was recently advanced
by a combined analysis of bed-surface images and digital elevation
models (DEMs) (Curran and Tan, 2014a; Curran and Waters, 2014),
with the procedure described as follows. First, clusters are visually identi-
fied by the particle arrangements shown in the digital photos. Then, the
visually identified clusters are verified with the DEM, checking whether
clusters are discrete and protruding above the mean bed level by a spec-
ified minimum height (e.g., D85 or D95). Last, each verified cluster is con-
firmed by checking whether the cluster consists of a recognizable anchor
clast ND90, around which at least two particles ND50 were deposited. In
contrast to the previous laboratory approaches that used only images or
DEMs to identify clusters (Mao, 2012; Piedra et al., 2012; Heays et al.,
2014), the combined use of images and DEMs represents technological
progress, providing a more robust approach. This approach, however,
continues to rely on visual inspection at the identification stage and spec-
ification of some quantitative criteria (e.g., threshold protrusion height
and grain sizes) at the verification and confirmation stages, thus is
prone to a certain degree of subjective judgment.

Attempts to apply advanced methods to studies of field clusters have
beenmade by two groups of researchers. The first group (Entwistle et al.
2008) used the DEM derived from terrestrial laser scanning (TLS) and an
optimized moving window to compute the local standard deviations
(SD) of bed elevation across a study reach. The resultant SD surface was
interrogated to extract the SD that corresponded to the observed clusters.
The statistics derived from the classified SDwere then applied to a valida-
tionDEM to produce amap of predicted clusters. The density and spacing
metrics of these predicted clusters were consistent with field observa-
tions, while the shapes and constituent grains of individual clusters
were not resolvablewith this statistical approach. By contrast, the second
group (L'Amoreaux and Gibson, 2013) used image analysis and nearest
neighbor statistics to quantify the relative abundance and spatial scale
of clusters, yet individual clusters were not resolvable with such spatial
statistics. The most debatable aspect of this approach is, perhaps, to
collectively treat large grains (ND84) and medium grains (between D50

and D84) as clusters just because they were found in proximity to similar
grains more frequently than the spatially random null hypothesis would
predict. The lack of a topographic component in this type of analysis,
however, made clusters a 2D statistical feature of plane sampling rather
than a 3D morphological feature of bed structures.

While the use of DEMs in cluster identification has proved promising
in laboratory settings, extending this approach to field studies would
require: (1) high-resolution DEMs that resolve both the grain- and
microform-scale topographies, and (2) DEM-based delineation of clus-
ters. High-resolution DEMs that capture grain-scale details over the
reach-scale extent are now achievable using the hyperscale survey
methods, such as TLS or Structure-from-Motion photogrammetry (see
reviews by Milan and Heritage (2012) and Brasington et al. (2012)).
However, a standardized DEM-based method for delineating clusters
is still lacking. Herewe present a novel, DEM-based approach for cluster
delineation. This approach is facilitated by the feature recognition
capability of the factorial kriging that decomposes the grain- and
microform-scale components of DEM. The grain-scale DEM serves as
an aid for segmentation of grain boundaries, while the microform-
scale DEM is used to identify individual clusters. The delineated clusters
are compared with a compilation of existing field data to confirm the
robustness of the presented approach.

2. Factorial kriging

TheDEMof a gravel-bed surfacemay be considered as a random field
of spatial elevation data (e.g., Matheron, 1971; Journel and Huijbregts,
1978; Furbish, 1987; Robert, 1988; Goovaerts, 1997; Nikora et al.,
1998), where the dependency between the bed elevations at two loca-
tions is expressed as a function of the spatial lag, i.e., the separation
distance and direction between the two locations. The organization
of the gravel-bed surface has been investigated by many researchers
using the semivariogram (or simply called variogram) (e.g., Robert,
1988, 1991; Nikora et al., 1998; Butler et al., 2001; Marion et al., 2003;
Aberle and Nikora, 2006; Cooper and Tait, 2009; Hodge et al., 2009;
Mao et al., 2011; Huang and Wang, 2012; Curran and Waters, 2014),
which is a second-order structure function summarizing all the informa-
tion about the spatial variation in bed elevation over a range of scales.
The empirical (also termed sample or experimental) 2D variogram
of the DEM, denoted as γ̂ðhÞ, may be expressed by a general form of
semivariance as follows:

γ̂ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

z xið Þ−z xi þ hð Þ½ �2 ð1Þ

where h= lag vector separating locations xi and xi + h; z(x)= bed
elevation at x; N(h)=number of data pairs separated by h, typically h
is limited to half of the DEM extent to ensure that sufficient data pairs
are used. Use of Eq. (1) also requires that bed elevations are normally dis-
tributed and second-order stationary (Butler et al., 2001; Hodge et al.,
2009). Hence, the elevation data must be normalized to a zero mean
anddetrendedwith a trend surface to remove first-order nonstationarity
(Oliver andWebster, 1986; Hodge et al., 2009). The detrended (or resid-
ual) elevations retain the topographies of sediment grains and micro-
forms, with the general bed slope removed.

Eq. (1) may be used to calculate the semivariance γ̂ðhÞ over a range
of h, resulting in an empirical variogram surface that shows the spatial
variability of bed elevation at different scales and along different direc-
tions. The variogrammay be also plotted as a 1-D profile along a specific
direction of interest. Such a 1-D directional variogram has been used
extensively to investigate the multiscale properties of the gravel-bed
surface (Robert, 1988; Nikora et al., 1998; Butler et al., 2001; Hodge
et al., 2009; Huang and Wang, 2012). Depending on the resolution
and extent of the DEM, and whether bedforms are present, the
variogram profile may exhibit single or multiple scaling regions that
correspond to different scales of the bed structures. Fig. 1 demonstrates
a schematic empirical variogram profile (solid circles) that exhibits two
scaling regions. The first region, with the lags ranging between [0,a1],
corresponds to the grain-scale structure. The second region, with the
lags ranging between [a1,a2], corresponds to themicroform-scale struc-
ture. At lags greater than a2, the semivariance remains a constant sill
value, which corresponds to a saturation region where the spatial



Fig. 1. A schematic empirical variogram profile (solid circles) that exhibits two scaling
regions. Lags between [0, a1] correspond to grain-scale structure; lags between [a1,a2]
correspond to microform-scale structure; lags Na2 correspond to saturation region with
constant sill. The empirical variogram profile is fitted with a double spherical model
(red line) that combines linearly two single spherical models (blue lines), one has a
short range a1, the other has a long range a2, with c1 and c2 being the corresponding sills.
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dependency isminimal andno longer varieswith the lag. The variogram
profile may exhibit more than two scaling regions if bedforms at larger
scales (e.g., mesoform or macroform) are also present. On the contrary,
the variogram profile may not reach a constant sill if the extent of the
DEM is not large enough or bed elevations are not completely stationary
(Hodge et al., 2009; Huang and Wang, 2012). It should be noted here
that to capture the mean scales of sediment grains and microforms in
all directions, an omni-directional variogram profile integrating all
directional variograms was used in this study, following the suggestion
of Isaaks and Srivastava (1989).

To be useful in the kriging, the empirical variogram profile is fitted
with a continuous, basic mathematical model. For a variogram profile
that exhibits multiple scales, a nested model (i.e., a linear combination
of basic mathematical models) may be used to describe the multiscale
bed structure. For example, linear, exponential, and spherical models are
among the most frequently used basic mathematical models (Atkinson,
2004; Webster and Oliver, 2007). For the schematic diagram shown in
Fig. 1, the empirical variogram is fitted with a double spherical model
(red line), which is a nested model that combines linearly two spherical
models (blue lines), one with a short range a1 and the other with a long
range a2, whichmay be expressed as follows (Webster and Oliver, 2007):

γ hð Þ ¼ γ1 hð Þ þ γ2 hð Þ

¼

c1
3h
2a1

−
1
2

h
a1

� �3
" #
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ð2Þ
where γ(h)= theoretical variogram model, to be differentiated from
the empirical variogram γ̂ðhÞ given in Eq. (1), here h= |h| is omni-
directional lag; γ1(h) and γ2(h) are short- and long-range variograms;
(a1,c1) and (a2,c2) are, respectively, the pairs of (range, sill) of γ1(h)
and γ2(h), evaluated using, e.g., the gstat package of the open source
software R (Pebesma, 2004). In this study, the range values a1 and a2
correspond to the grain and microform scales, respectively. Once γ(h) is
decomposed intoγ1(h) andγ2(h), they can beused in the factorial kriging,
described as follows.

Factorial kriging (FK) is a geostatistical interpolation method
devised by Matheron (1982) that allows the decomposed components
of a regionalized variable to be individually estimated and mapped. FK
has been widely applied in a variety of research fields, e.g., image
processing and analysis for remote sensing (Wen and Sinding-Larsen,
1997; Oliver et al., 2000; Van Meirvenne and Goovaerts, 2002;
Goovaerts et al., 2005a; Ma et al., 2014), water and soil environmental
monitoring (Goovaerts et al., 1993; Goovaerts and Webster, 1994;
Dobermann et al., 1997; Bocchi et al., 2000; Castrignanò et al., 2000;
Alary and Demougeot-Renard, 2010; Allaire et al., 2012; Lv et al.,
2013; Bourennane et al., 2017), geophysics and geochemistry explora-
tion (Galli et al., 1984; Sandjivy, 1984; Jaquet, 1989; Yao et al., 1999;
Dubrule, 2003; Reis et al., 2004), risk assessment and crime manage-
ment (Goovaerts et al., 2005b; Kerry et al., 2010), among many others.
Despite its extensive application, to date FK has not been applied to
the delineation of cluster microforms.

The theory of FK can be found in textbooks dedicated to geostatistics
(e.g., Goovaerts, 1997; Webster and Oliver, 2007), thus it is only briefly
summarized here. Kriging generally refers to geostatistical predictions
that estimate the value at any point using a set of nearby sample values.
Consider the bed elevation as a spatial random variable Z(x), the kriged
estimate of Z at a point x0, denoted as Ẑðx0Þ, is a weighted average of
N available data, z(x1), z(x2), …, z(xN), expressed by

Ẑ x0ð Þ ¼
XN
i¼1

λiz xið Þ ð3Þ

where λi are weighting factors to be determined. The weighting factors
must sum to unity to ensure an unbiased estimate, and the estimation
variance is minimized subject to the non-bias condition. These two con-
straints lead to the following systemof ordinary kriging (OK) equations:

XN
i¼1

λi ¼ 1 ð4aÞ

XN
j¼1

λ jγ xi;x j
� �þ ψ x0ð Þ ¼ γ xi;x0ð Þ for i ¼ 1;2; …;N ð4bÞ

where γ(xi,xj)= semivariance of Z between xi and xj, for omni-
directional variograms γ(h) is used, h = |xi − xj|; ψ(x0)= Lagrange
multiplier, introduced to achieve varianceminimization. For the system
given in Eqs. (4a) and (4b), N + 1 equations are used to solve N + 1
unknowns λ1, λ2, …, λN and ψ(x0). The solved weighting factors are
used in Eq. (3) for an “ordinary kriged” estimate of Z. To estimate the
individual components of Z at different scales, however, FK will be
used as follows.

For a variogram exhibiting two scaling regions (Fig. 1), i.e., short-
and long-range (or grain- and microform-scale) structures (Robert,
1988; Huang and Wang, 2012), the residual elevation Z(x) may be
expressed as a sum of two elevation components:

Z xð Þ ¼ Z1 xð Þ þ Z2 xð Þ ð5Þ

where Zk(x)= k-th component, k= 1 and 2 denotes short- and long-
range components, respectively. Assuming that the two components
are uncorrelated, the omni-directional variogram of Z, γ(h), is a nested
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combination of short- and long-range omni-directional variograms γ1

(h) and γ2(h), as shown in Eq. (2). Similar to the ordinary kriging in
Eq. (3), each elevation component Zkmay be estimatedwith aweighted
average of available data z(xi) by the factorial kriging:

Ẑ
k
x0ð Þ ¼

XN
i¼1

λk
i z xið Þ for k ¼ 1;2 ð6Þ

where Ẑ
k ¼ factorial kriged estimate of Zk, and λik are weighting factors

for the k-th component. The weighting factors are determined by solv-
ing the following system of FK equations:

XN
i¼1

λk
i ¼ 0 ð7aÞ

XN
j¼1

λk
jγ xi; x j
� �

−ψk x0ð Þ ¼ γk xi; x0ð Þ for i ¼ 1;2;…;N ð7bÞ

where ψk(x0)= Lagrange multiplier; here γk(xi,x0) for k=1 and 2 are,
respectively, replaced by γ1(h) and γ2(h) determined from Eq. (2), and
Fig. 2. An example gravel-bed patch collected from Nanshih Creek (northern Taiwan): (A) ordi
range component of FK DEM; (D) surface elevation distributions of OK DEM, and short- and lo
γ(xi,xj) is replaced by γ(h). Eq. (7a) states that λik must sum to 0 over i
(rather than 1) to ensure an unbiased estimate and accord with Eq. (5),
while Eq. (7b) states thatλik are selected to reach aminimumestimation
variance. The system in Eqs. (7a) and (7b) is solved for each scale (each k)
to determine the weighting factors λi

k, which are used in Eq. (6) to
estimate individual components of spatial elevations, referred to as
“factorial kriged (FK) DEM components”.

As an illustration, we present in Fig. 2 a gravel-bed patch collected
from Nanshih Creek (Taiwan) to show the ordinary kriged (OK) DEM
and the short- and long-range components of the factorial kriged (FK)
DEM. It is evident that the full bed topography (Fig. 2A) is the superpo-
sition of grain- and microform-scale topographies (Fig. 2B and C). The
short-range FK DEM exhibits a flat bed, with 90% of the elevations in a
narrow range between −0.04 and +0.03 m (Fig. 2D). The long-range
FK DEM is smoother than the OK DEM, with 90% of the elevations in a
range between−0.12 and+0.09 m, slightly smaller than the 90%eleva-
tion range of the OK DEM (between −0.14 and +0.1 m). Individual
grains are sharply outlined in the short-range FK DEM, suggesting that
the grain-scale DEM may well serve as an aid for segmentation of
grain boundaries. Individual grains are not fully recognizable in the
long-range FK DEM, while groupings of particles emerge as small-
nary kriged (OK) DEM; (B) short-range component of factorial kriged (FK) DEM; (C) long-
ng-range FK DEMs.
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scale bedforms such as clusters. This feature recognition capability of
the microform-scale DEM is used herein to devise a DEM-based
approach for cluster identification. As a final note, the advantage of
the FK is that the parameters used in the computations, i.e., γ(h), γ1

(h) andγ2(h), are determined directly from the variogrammodelswith-
out a need for trial and error. In addition, the FKDEMs aremore intuitive
since the full (OK) DEM is simply the sum of short- and long-range FK
DEMs.
3. Case study

3.1. Study site

The study site was located at a point bar in lower Nanshih Creek
near its confluence with Hsintien Creek, northern Taiwan (Fig. 3).
Nanshih Creek is a mountain stream with an annual runoff of the
order of 1.3 km3. The lowest and highest monthly flows (19.6 and
84.8 m3/s) occur, respectively, in April and September. The steep slope
at the upper end of the flow duration curve (with the 1%, 5%, and 10%
duration flows = 441, 128, and 79 m3/s) indicates that these high
flows are flashy responses to rainfall or typhoon events. The gravel bar
remains exposed for most of the time, and is sporadically inundated
andmobilized during theflood seasons in summer and fall. The exposed
bar is ~100 m wide, stretching along a sharp bend ~500m in length. A
6m × 6mpatch of the gravel-bed surfacewas scannedwith a terrestrial
laser scanner. The size of the patchwas chosen based on a prior study of
this area (Huang andWang, 2012), where a 6m × 6m extent was found
large enough to reveal the microform-scale structures, which was also
confirmed by the long range value of the empirical variogram profile
(see Section 4.1). The patch was located on the bar near the outer
bank where a zone of maximum bedload transport shifted from the
inner bank at the upstream of the bend toward the pool (Dietrich and
Smith, 1984; Clayton and Pitlick, 2007). Active transport and deposition
of bedload particles gave rise to microform bed structures. The grain
size distribution (GSD) was not sampled on site using Wolman-style
pebble counts (Bunte and Abt, 2001), rather it was obtained using
the short-range FK DEM (see Section 4.2). The median grain size D50

was 91 mm, the sorting coefficient σI was 0.83 (=|ϕ84 − ϕ16|/4 + |
ϕ95 − ϕ5|/6.6, where ϕi = − log2Di), and the sorting index SI was
Fig. 3. (A) Orthorectified photograph of the study site (24°54′10”N, 121°33′24″E) at
a point bar in lower Nanshih Creek (northern Taiwan). Scanned gravel-bed patch is
indicated by a square box, flow directions are indicated by arrows. (B) Oblique view of
the 6 m × 6 m gravel-bed patch, around which a 1 m wide buffer on each side was set
with a yellow tape.
1.83 (=(D84/D50 + D50/D16)/2). The gravel bed was thus classified as
moderately sorted (Folk and Ward, 1957; Bunte and Abt, 2001).

3.2. DEM data

The bed topographywas scanned using a FARO Photon 80 terrestrial
laser scanner, which has a scan range between 0.6 and 76m and a nom-
inal accuracy of 2 mm. Around the 6 m × 6 m gravel-bed patch, a 1 m
wide buffer on each sidewas setwith a yellow tape (Fig. 4A). Terrestrial
laser scans (TLS) were performed from four directions at a distance
of 8 m from the center of the patch, aimed to minimize data voids
in spots hidden by large, protruding particles (Hodge et al., 2009;
Wang et al., 2011). A high-resolution mode was used to generate a
point spacing of 3 mm, resulting in a total of 10 million points over
the patch. The TLS point cloud data were co-registered and merged by
identifying the spherical targets (with high reflection contrast) placed
at the corners of the patch. The density of the merged TLS data was of
the order of 30 points/cm2.

Considerable initial efforts were devoted to filtering out the “mixed
pixel errors” (Hodge, 2010), which occurred near the edges of the par-
ticles where the range measurement acquired from the area of a com-
plex surface sampled by the laser footprint was not representative of
the range at the center area of that footprint. An original DEM with 1
cm× 1 cmresolutionwas generatedwith a two-stagemean-based filter
(Wang et al., 2011) by identifying and averaging the TLS data points of
the upmost surface. The original DEM was detrended with a planar
trend surface and normalized to a zero mean. The data voids at spots
hidden by protruding grains were filled via the ordinary kriging, yield-
ing a voidless ordinary kriged (OK) DEM on 1 cm × 1 cm grids
(Fig. 4B), also shown as a color hillshade map (Fig. 4C).

4. DEM-based delineation of clusters

The proposed approach consists of five steps: (1) decomposing the
short- and long-range scales of the OK DEM using a nested variogram
model; (2) segmenting grain boundaries using the short-range FK
DEM; (3) identifying potential clusters using the long-range FK DEM;
(4) delineation of individual clusters using the identified clusters and
segmented grain boundaries; (5) elimination of the clusters that do
notmeet the specified criterion for theminimumnumber of constituent
grains. These steps are described in the following sections.

4.1. Decomposition of short- and long-range scales

The short- and long-range spatial scales of the OK DEM were
decomposed using a theoretical, nested variogram model (Fig. 5). An
omni-directional empirical variogram profile was calculated over a
range of lag h up to half of the DEM extent. The empirical variogram
was fitted with a nested double spherical model that combines a
short-range spherical model (range a1=0.47 m, and sill c1 = 6.457 ×
10−3 m2) and a long-range spherical model (range a2= 0.962 m, and
sill c2 = 4.954 × 10−3 m2). The short range a1 represents the sediment
grain scale, which corresponds to the D99.5 of the GSD. The long
range a2 represents the microform scale. A saturation region is reached
at h N a2, indicating that bedforms at scales larger than ~1 m were not
present in the 6 m × 6 m gravel-bed patch, which justified our choice
of patch size. The short- and long-range spherical models, i.e., γ1(h)
and γ2(h), were then used in Eqs. (6)–(7a) and (7b) to generate the
short- and long-range FK DEMs, respectively.

4.2. Segmentation of individual grains

The short-range FK DEM (Fig. 6A) exhibits a grain-scale topographic
relief. Individual grains are sharply outlined at the grain boundaries
where the residual elevations exhibit a sudden transition from positive
values (light gray) to negative values (dark gray). Thus, the zero-level



Fig. 4. (A)Oblique-perspective grayscale intensity image of terrestrial laser scanning (TLS) data. Yellow arrowspoint at spherical targets (14.5 cm indiameter) used for data co-registration
and merge; (B) grayscale map of OK DEM (1 cm× 1 cm resolution) of the 6 m× 6m gravel-bed patch; (C) color hillshademap of OK DEM. Red arrows point at the same location toward
the same direction.
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contours of the short-range FK DEMwere used in this study as an aid for
segmentation of grain boundaries. Fig. 6B shows the zero-level contours
(white lines) of the short-range FK DEM, where individual grains
Fig. 5. Omni-directional variograms of the OK DEM: empirical variogram (solid circles) is
fitted with a nested double spherical model (gray line) that combines linearly a short-
range spherical model (red line) and a long-range spherical model (blue line), with the
short and long ranges: a1=0.470 m, a2=0.962 m, and sills c1 = 6.457 × 10−3 m2, c2 =
4.954 × 10−3 m2.
(includingmany smaller ones) become clearly distinguishable. Some frag-
mentations associatedwith grain-surface texture are exhibited also by the
zero-level contours. Such textural features on the grain surfaces, however,
provide no additional information useful for grain segmentation.

Individual grains were digitized manually by a single operator
in ArcGIS (Esri) on the hillshade map of OK DEM (as a base map),
superimposed with the zero-level contours of the short-range FK DEM
(as a visual aid). A total of 1469 grains were recognized and digitized
(Fig. 6C), which were fitted with ellipses (Fig. 6D) and their b-axes
were used to derive the GSD (Bunte and Abt, 2001), as shown in
Fig. 7. The grain sizes range from 27.6 to 569.6 mm with a median size
D50= 91 mm. The GSD of the digitized grains is well approximated by
a lognormal distribution (Fig. 7).

Although grain segmentation was done manually in this study,
automation of the procedure is possible. The grain segmentation
procedure of existing automated grain-sizing software, such as Digital
Gravelometer (Graham et al., 2005) and BASEGRAIN (Detert and
Weitbrecht, 2012, 2013), can be typically divided into three processes:
(1) morphological filtering to enhance grain boundaries or interstices
between grains (e.g., bottom-hat transformation); (2) detection
of grain boundaries (e.g., edge detection algorithms, double-threshold
approach); (3) segmentation of individual grains (e.g., dilation/
skeletonization procedure, watershed segmentation). Among these
processes, the second is particularly demanding given the difficulty of
accurately detecting grain boundaries. Our experience with these auto-
mated grain-sizing software indicated that segmentation of individual
grains with full automation remains a challenge. With the zero-level
contours of the short-range FK DEM usable as a guide to delineate
grain boundaries, it is possible to streamline the workflow of
grain segmentation by incorporating the zero-level contours
into, e.g., the algorithm of automated image segmentation re-
cently devised by Karunatillake et al. (2014) for granulometry
and sedimentology.



Fig. 6. (A) Grayscalemap of short-range FKDEM (6m × 6m extent); (B) zero-level contours (white lines) superimposed on short-range FKDEM; (C) digitized grains; (D) digitized grains
fitted with ellipses, whose b-axes were used to derive the GSD.
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4.3. Identification of potential clusters

The long-range FK DEM (Fig. 8A) exhibits a topographic relief where
groupings of particles emerge as microform-scale features such as
clusters. The long-range FKDEMwas used herein as a tool for identifica-
tion of potential clusters. With the given working definition of clusters:
“discrete, organized groupings of larger particles that protrude above the
local mean bed level”, a threshold elevation level was used to identify
areas that “protrude above the local mean bed level”. Shown in Fig. 8A
are a set of contours ranging from the 60th to 90th percentile levels.
The 90th percentile contours cover only the locally highest areas
Fig. 7. Grain size distribution (GSD) derived from b-axes of digitized grains (Fig. 6D). The
GSD is well approximated by a lognormal distribution.
while the 60th percentile contours includemore of the lower, surround-
ing areas. The discrete areas enclosed by a specific contour percentile
level may thus correspond to individual clusters. Fig. 8B is the seg-
mented grains superimposed on the long-range FK DEM, confirming
that the identified clusters are indeed “groupings of larger particles”.
A question then arises: Which contour percentile level is suitable for
delineation of clusters? This issue is addressed below.
4.4. Delineation of individual clusters

To illustrate how individual clusters were delineated, we show in
Fig. 8C the discrete areas enclosed by the 60th percentile contours.
The segmented grains were superimposed on the enclosed areas, and
only those grains that overlapped fully or partially with the enclosed
areaswere retained. The retained particleswere examined for their con-
nectedness. Grains that were mutually connected (or in contact) were
grouped into a cluster. This geoprocessing task can be done by Python
scripting and automation in ArcGIS. Five clusters so delineated
(numbered as 1 to 5) are shown in Fig. 8C, where the constituent grains
of a cluster were filled with the same color.

In Fig. 8C, the uncolored grains that overlapped with the contour-
enclosed areas but were not classified as clusters were eliminated for
not meeting the specified minimum number of constituent grains.
Herein, to ensure that the delineated clusters are “organized groupings
of larger grains”, we adopted a criterion: a cluster consists of at least
three abutting grains. By setting the minimum number of constituent
grains as three, we aimed to exclude the possibility of unorganized,
random groupings. We did not specify a threshold size for anchor clast
(referring to the largest grain of a cluster). However, by adopting
three as the minimum number of constituent grains, the resulting



Fig. 8. (A) Color map of long-range FK DEM (6 m × 6 m extent), superimposed by contours ranging from the 60th to 90th percentile levels; (B) long-range FK DEM superimposed by
digitized grains; (C) delineated clusters resulting from the 60th percentile contours (blue lines), where the constituent grains of a cluster are filled with the same color, while the
uncolored grains are eliminated for not meeting the required minimum number of constituent grains. (See text for details).
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anchor clastswould be consistently greater than theD90 of the GSD (see
Section 5.1).

As shown in Fig. 8C, using the 60th percentile contours to identify and
delineate potential clusterswould result in oversized (or overconnected)
clusters. As a result, cluster 2 alone has an area of 14.2 m2,which is nearly
40% of thepatch. The total area of thesefive clusters (=19.5m2) exceeds
54% of the patch, far greater than the reported values, which rarely
exceeded 40% (e.g., Brayshaw, 1984; Wittenberg, 2002; Wittenberg
and Newson, 2005; Strom and Papanicolaou, 2008; Hendrick et al.,
2010). In addition, the length and width of cluster 2 exceed the micro-
form scale (~1 m) revealed by the variogram profile (described in
Section 4.1). Clearly, the 60th percentile contours are too low to be a suit-
able level for delineation of clusters. In the following section, a set of con-
tours ranging from the 70th to 90th percentile levels are used to identify
and delineate clusters. The results are compared with a compilation of
Fig. 9.Delineated clusters resulting from the (A) 70th, (B) 75th, (C) 80th, (D) 85th, and (E) 90th
colors are the constituent particles of individual clusters, uncolored grains are eliminated on
attributes.
existing field data, their implications for practical applications are also
discussed.

5. Results and discussion

5.1. Delineated clusters

Fig. 9 shows the delineated clusters resulting from the 70th to 90th
percentile contours, with the statistics summarized in Table 1. With
increasing contour percentile level, the number of clusters decreases
monotonically from 16 to 4, and the corresponding total area of clusters
also decreases from 36.6 to 9.1% of the patch (Fig. 9F). The number
of constituent grains in each cluster exhibits the widest range of varia-
tion (3 to 52 grains) for the 70th percentile contour. Such range of
variation reduces with increasing contour percentile level, exhibiting
percentile contours of long-range FK DEM (6m × 6m extent), grains filledwith the same
es, and arrows indicate channel centerline directions; (F) summary statistics of cluster



Table 1
Attribute statistics of individual clusters delineated with the 70th to 90th percentile contours of long-range FK DEM.

Cluster
ID

70th percentile contour 75th percentile contour 80th percentile contour 85th percentile contour 90th percentile contour

No. of
grains

Area
(m2)

Anchor
size
(×D90)

DAT No. of
grains

Area
(m2)

Anchor
size
(×D90)

DAT No. of
grains

Area
(m2)

Anchor
size
(×D90)

DAT No. of
grains

Area
(m2)

Anchor
size
(×D90)

DAT No. of
grains

Area
(m2)

Anchor
size
(×D90)

DAT

1 6 0.28 2.07 1.77 5 0.24 2.07 1.77 5 0.24 2.07 1.77 4 0.21 2.07 1.75 18 1.08 2.26 1.82
2 5 0.23 1.15 1.74 13 0.49 1.81 1.77 3 0.10 1.39 1.81 3 0.65 2.45 1.73 3 0.41 2.01 1.72
3 16 0.53 1.81 1.77 37 2.50 2.26 1.70 5 0.77 2.23 1.77 22 1.24 2.26 1.84 9 1.24 2.48 1.63
4 39 2.56 2.26 1.71 11 1.05 2.45 1.63 4 0.77 2.45 1.65 3 0.40 2.39 1.80 5 0.52 1.99 1.78
5 13 1.08 2.45 1.64 6 0.55 1.82 1.71 3 0.33 1.82 1.70 4 0.47 2.01 1.71
6 3 0.10 1.14 1.75 16 0.89 2.01 1.73 24 1.26 2.26 1.84 16 1.58 2.48 1.64
7 7 0.58 1.82 1.69 3 0.29 1.45 1.79 9 0.80 2.01 1.71 6 0.69 1.99 1.72
8 18 0.94 2.01 1.72 44 2.58 2.48 1.70 3 0.29 1.45 1.79 5 0.30 1.34 1.67
9 52 2.74 2.48 1.71 16 1.04 1.99 1.66 25 2.23 2.48 1.67
10 3 0.23 1.16 1.78 4 0.55 2.39 1.71 11 0.94 1.99 1.67
11 10 0.68 2.39 1.73 3 0.14 1.48 1.74 3 0.53 2.39 1.71
12 5 0.39 1.45 1.75 9 0.48 1.34 1.71 7 0.41 1.34 1.70
13 24 1.30 1.99 1.69 4 0.36 1.74 1.77
14 7 0.38 1.48 1.76
15 16 0.67 1.34 1.74
16 6 0.49 1.74 1.73
Average 14 0.82 1.80 1.73 13 0.86 1.94 1.72 9 0.72 1.99 1.73 8 0.69 2.12 1.73 9 0.81 2.18 1.74
Mean grain size
of cluster (×D90)

1.16 1.24 1.41 1.44 1.48

Total area (m2) 13.18 11.17 8.67 5.55 3.26
Area percentage 36.6 31.0 24.1 15.4 9.1
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the narrowest range (3 to 18 grains) for the 90th percentile contour. The
average number of grains per cluster and average area of individual
clusters, however, do not exhibit any monotonic trends with increasing
contour percentile level (Table 1), varying in the ranges from 8 to
14 grains/cluster and 0.69 to 0.86 m2/cluster.

Despite the lack of monotonic trends in the average number of
grains per cluster and mean area per cluster, the mean grain size of
clusters increases monotonically from 1.16 to 1.48 times the D90 with
increasing contour percentile level (Fig. 9F). Coarsening of clusters is
observable in Fig. 9A–E, where the smaller, lower grains surrounding
the larger clasts are increasingly excluded with the increase of contour
percentile level. Coarsening of clusters is also reflected by the average
size of anchor clasts, which increases from 1.8 to 2.18 times the D90

with increasing contour percentile level (Fig. 9F). Variation of anchor
size has the widest range for the 70th percentile contour (1.14 to
2.48 times theD90) and the narrowest range for the 90th percentile con-
tour (1.99 to 2.48 times the D90). Coarsening of clusters with increasing
contour percentile level indicates that a higher delineation standard
tends to exclude those smaller, surrounding grains while retaining the
larger and more protruding, core particles.

A striking feature of our approach is that, even though a criterion for
threshold anchor size was not specified, the delineated clusters would
always contain an anchor clast that is greater than the D90 of the GSD
(Table 1). This is in contrast to the conventional approaches for cluster
identification, which identify a group of abutting particles that has an
anchor clast larger than the specified threshold size, and then verify
the identified cluster by examining whether it protrudes above the sur-
rounding bed surface (e.g., Oldmeadow and Church, 2006; Hendrick
et al., 2010). The use of a threshold anchor size as the primary criterion
for cluster identification and a bed topography as the secondary crite-
rion is probably attributable to the fact that grain sizes are more acces-
sible than a detailed DEM. With the support of the FK DEM, however,
the delineated clusters not only protrude higher above the bed but
also meet the expectation for anchor sizes. Our results thus point
toward employing a DEM-based approach rather than a grain-size-
based approach for cluster delineation.

Finally, the areal fractal dimension DAT (Hausdorff-Besicovich
dimension of the projected area) of each delineated cluster was esti-
mated, using the box-counting approach implemented in an open
source software FracLac (Karperien, 2013). The areal fractal dimension
is a single aggregate index that characterizes the projected area and
perimeter of a cluster, and can be used to discriminate the planform
morphologies of the clusters (Papanicolaou et al., 2012). Box counting
was performed to determine the number of square boxes, N(μ), of box
size μ, that cover the projected area of a cluster. Given the fact that N
(μ) would be negatively correlated to μ, using a series of box sizes the
fractal dimension DAT can be determined via the slope of the best
linear fit to the log N(μ) vs. log μ data. To facilitate this task, each cluster
was exported as a binary image and then input to FracLac. Fig. 10 shows
the binary images of delineated clusters along with their DAT values. In
general, the DAT values of individual clusters would either increase or
decrease with increasing contour percentile level due to being split
into smaller ones or exclusion of lower surrounding grains. However,
the ranges of DAT values (collectively 1.63 to 1.84) remain fairly consis-
tent. The average values of DAT with increasing contour percentile level
remain nearly constant at 1.73 ± 0.01 (Table 1, Fig. 9F), indicating that
clusters delineated with different contour percentile levels exhibit sim-
ilar planform morphologies.

5.2. Comparison with existing field data

The results were compared with a compilation of reported field data
on cluster size, density, planform morphology, and GSD information
(Table 2). Clusters have been documented in a variety of settings,
including: (1) headwater streams in New Zealand with different levels
of flow variability and armoring, composed of metamorphic platy clasts
or coarse-grained plutonic sediments (Biggs et al., 1997); (2) steep
upland cobble-bed rivers and low-gradient gravel-bed rivers, and a
wandering gravel-bed river in England (Wittenberg and Newson,
2005; Wittenberg et al., 2007); (3) small, perennial streams in England
with well-rounded cobble beds or flint-gravel beds, and upland streams
inWaleswith slate gravel/cobble beds, all characterized byflashy runoff
due to rainfall (Brayshaw, 1984, 1985); (4) ephemeral gravel-bed
streams in Israel with relatively rare, annual flow events that follow
intense rainstorms (Wittenberg, 2002; Wittenberg et al., 2007);
(5) Mediterranean gravel-bed rivers in Italy characterized by deeply-
incised valleys, poorly-sorted beds and flashy peak flows that occur in
autumn (Brayshaw, 1985); (6) typical mountain gravel-bed rivers in
USA with pool-riffle morphologies, flowing through steeply-sided
glacial valleys, with runoff dominated by snowmelt or affected also by



Fig. 10.Binary images of clusters delineatedwith the (A) 70th, (B) 75th, (C) 80th, (D) 85th, and (E) 90th percentile contours of long-range FKDEM (6m× 6mextent), alongwith the areal
fractal dimension, DAT, of each cluster.

Table 2
Comparison of cluster attributes from this study with those from previous field studies.

Attribute This study Previous field studies Sources

Grain sizes
D50 (mm) 91 30–97 (11 cobble/gravel bed rivers, NE England) Wittenberg et al. (2007)

40–105 (American and S.F. Snoqualmie Rivers, USA) Strom and Papanicolaou (2008)
29–91 (Entiat River, USA) Hendrick et al. (2010)

D84 (mm) 190 45–215 (12 headwater streams, New Zealand) Biggs et al. (1997)
45–224 (11 cobble/gravel bed rivers, NE England) Wittenberg et al. (2007)
80–190 (American and S.F. Snoqualmie Rivers, USA) Strom and Papanicolaou (2008)
50–210 (6 cluster-dominated river beds, worldwide) Strom and Papanicolaou (2009)

D90 (mm) 233 104–441 (7 rivers, NE England and Mt. Carmel Israel) Wittenberg (2002)
55–315 (15 rivers, NE England, Mt. Carmel/Negev Israel) Wittenberg et al. (2007)

Sorting indicesa

σI 0.83 0.89 (East Creek, BC Canada) Oldmeadow and Church (2006)
0.75–1.74 (15 rivers, NE England, Mt. Carmel/Negev Israel) Wittenberg et al. (2007)

SI 1.83 1.73 - 3.59 (7 rivers, NE England and Mt. Carmel Israel) Wittenberg (2002)
1.57–2.47 (dynamic equilibrium bar, River South Tyne, UK) Wittenberg and Newson (2005)
1.81 (East Creek, BC Canada) Oldmeadow and Church (2006)
1.72–3.11 (11 cobble/gravel bed rivers, NE England) Wittenberg et al. (2007)
b2.4 (American and S.F. Snoqualmie Rivers, USA) Strom and Papanicolaou (2008)

Cluster density (clusters/m2) 0.11–0.44 0.07–0.28 (12 headwater streams, New Zealand) Biggs et al. (1997)
0.89–1.4 (dynamic equilibrium bar, River South Tyne, UK) Wittenberg and Newson (2005)
0.93 (East Creek, BC Canada) Oldmeadow and Church (2006)
0.7–1.5 (Entiat River, USA) Hendrick et al. (2010)

Proportion of cluster area (%) 9.1–36.6 5–10 (4 gravel-bed rivers, England and Italy) Brayshaw (1985)
0.7–4.4 (12 headwater streams, New Zealand) Biggs et al. (1997)
30–40 (4 perennial streams, NE England) Wittenberg (2002)
8–22 (3 ephemeral streams, Mt. Carmel Israel) Wittenberg (2002)
7–16 (dynamic equilibrium bar, River South Tyne, UK) Wittenberg and Newson (2005)
6–39 (15 rivers, NE England, Mt. Carmel/Negev Israel) Wittenberg et al. (2007)
3–10 (American and S.F. Snoqualmie Rivers, USA) Strom and Papanicolaou (2008)
N15 (cluster bars, Entiat River, USA) Hendrick et al. (2010)

Size of anchor clast (×D84) 1.40–3.04 1.77–7.38 (12 headwater streams, New Zealand) Biggs et al. (1997)
1.11–2.72 (dynamic equilibrium bar, River South Tyne, UK) Wittenberg and Newson (2005)
1–1.66 (East Creek, BC Canada) Oldmeadow and Church (2006)
N1.18–1.85 (11 cobble/gravel bed rivers, NE England) Wittenberg et al. (2007)
1.22–1.95 (American and S.F. Snoqualmie Rivers, USA) Strom and Papanicolaou (2008)

Areal fractal dimension DAT 1.72–1.74 1.62–1.77 (12 clusters, American River, USA) Papanicolaou et al. (2012)

a σI = |ϕ84− ϕ16|/4 + |ϕ95− ϕ5|/6.6, where ϕi= − log2Di; SI= (D84/D50 + D50/D16)/2.
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flash floods following rain-on-snow events or intense summer thunder-
storms (Strom and Papanicolaou, 2008; Hendrick et al., 2010;
Papanicolaou et al., 2012); (7) a mountain stream in a volcanic terrain
in the USA, with its plane bed composed of well-sorted cobbles/pebbles
and the flow regime dominated by snowmelt (de Jong, 1995); (8) an
anthropogenically influenced, small headwater stream in Canada, with
step-pool sequences present at the upstream side of a culvert and an
armored reach developing downstream of the culvert (Oldmeadow
and Church, 2006). Our results add data for a different geographic
region. Further background about the settings of these reported sites
can be found in the Supplementary information.

The attributes compared include grain sizes, sorting indices, cluster
density, area percentage, and size of anchor clast (Table 2). Our charac-
teristic sizes (D50, D84, D90= 91, 190, 233 mm) are well within the grain
size ranges reported, amongwhich the sediments of the upland cobble-
bed rivers in England are the coarsestwhereas those of the low-gradient
gravel-bed rivers in England are the finest. Our sorting indices, σI and
SI=0.83 and 1.83, indicating a moderately sorted river reach, resemble
those of the armored East Creek in British Columbia, Canada.

Our cluster densities range from 0.11 to 0.44 clusters/m2, which are
within the reported lower bound values (headwater streams, New
Zealand) and upper bound values (Entiat River, USA). The wide range
of cluster densities documented in these sites is attributable to differ-
ences in flow variability, armoring and grain shape, the criteria adopted
to define clusters, and the clustered bars selected for sampling (Biggs
et al., 1997; Hendrick et al., 2010). Our proportions of cluster area
range from 9.1 to 36.6%, which are within the lower bound values asso-
ciated with the headwater streams (New Zealand) and upper bound
values associated with the poorly-sorted, perennial streams (England).
The sizes of anchor clasts were scaled by theD84 in a number of datasets
compiled, with the lower bound values observed in East Creek (Canada)
Fig. 11. 3Dvisualization of clusters delineatedwith the (A) 70th, (B) 80th, and (C)90th percentile
extent). Arrows indicate channel centerline directions.
andupper bound values observed inheadwater streams (NewZealand).
Asmentioned earlier, our anchor sizes range from 1.14 to 2.48 times the
D90 (equivalent to 1.4 to 3.04 times theD84), which are concordant with
the reported range. In particular, our anchor sizes resemble those docu-
mented in the wandering River South Tyne (UK). Such resemblance
may be attributed to their similarities in sorting indices SI and transport
mechanisms. Clusters at our study site and South Tyne were both sam-
pled from a dynamic equilibrium bar that is exposed during low flows
but inundated and subjected to active transport during flashy high
flow events. Flow direction at the South Tyne study site varies with
the stage. Low flows run along the chute or diagonally across the bar,
whereas high flows run directly downstream, normal to the chute.
This is similar to the stage-dependent variation of transport direction
at our study site on a point bar along a channel bend (Clayton and
Pitlick, 2007).

The work of Papanicolaou et al. (2012) was the only one that docu-
mented fractal dimensions of field clusters, which included four line
clusters, four triangle clusters, and four rhombic clusters recorded in a
mountain gravel-bed stream (American River, USA). Their average
values of DAT for line, triangle, and rhombic clusters are 1.62, 1.77, and
1.76, respectively. Our average values of DAT, ranging from 1.72 to
1.74, are similar to their results. The DAT values of individual clusters
shown in Fig. 10 also coincide with their findings, where the pseudo-
line clusters on the upper left side of Fig. 10A–C exhibit the lowest
values of DAT (=1.64 ± 0.01), while the mega clusters on the upper
right side of Fig. 10C–E (with the border cropped) exhibit the highest
values of DAT (=1.83 ± 0.01).

As our results fall within the ranges of reported field data, we can
conclude that the FK DEM provides a novel, promising tool for cluster
delineation. Currently there is nouniversally accepted definition of clus-
ters, hence to recommend a standard contour percentile level for
contours of long-range FKDEM, and (D) the sameviewwith noclustersmapped (6m× 6m
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delineation of clusters may not be practical. Nonetheless, lower levels
(e.g., 70th–75th percentile contour) may be used if more of the smaller,
surrounding grains are to be included. By contrast, higher levels
(e.g., 80th–85th percentile contour) may be used if only those larger
and more protruding, core particles are to be retained. In the absence
of benchmark surfaces with correctly delineated clusters together
with a unique definition for clusters, delineation of clusters will inevita-
bly remain subjective in nature. Given that clusters vary in their constit-
uent grains, sizes and shapes across environments, however, the
parameters used in the FK, i.e., γ(h), γ1(h) and γ2(h), can be objectively
determined from the DEM-based variogram models.

Finally, it is deemed intuitive to examine the delineated clusters by
3D visualization, because it would be helpful to have a real sense of
what field scientists would see on site. The color patterns of delineated
clusters (Fig. 9A–E) were superimposed on the hillshade map of OK
DEM in ArcScene (Esri), and exported as oblique-perspective, stereo-
scopic images. Fig. 11 presents the resulting images of clusters delin-
eated with the 70th, 80th, and 90th percentile contour levels. As
mentioned earlier, with increasing contour percentile level the lower,
smaller grains surrounding the higher, larger clasts are increasingly
excluded, leaving only the more protruding core particles. Since our
approach is based on DEMs rather than grain sizes, it may exclude
some of the largest but isolated clasts that are not connected or in con-
tact with at least two sufficiently high grains to meet the definition of
a cluster. These largest but isolated clasts could otherwise be classified
as a cluster if the required minimum number of constituent grains is
lowered as two, or a small separation distance is specified allowing for
closely neighboring particles to be effectively identified as abutting
ones.

6. Conclusions

In this study, we used the FK to decompose the short- and long-
range (grain- and microform-scale) DEMs. The parameters used in the
FK were determined from the nested variogram models derived from
the OK DEM. The short-range FK DEM was used as an aid for grain seg-
mentation. The contour percentile levels of the long-range FKDEMwere
used to identify potential clusters. Individual clusters were delineated
on the basis of the segmented grains and identified clusters.

Our results reveal that the density and total area of delineated clus-
ters decrease with increasing contour percentile level, while the mean
grain size of clusters and average anchor size increase with the contour
percentile level. These results support the observation that larger grains
group as clusters and protrude higher above the bed than other smaller
grains. The average areal fractal dimension of clusters shows that clus-
ters resulting from different contour percentile levels exhibit similar
planform morphologies. A striking feature of the delineated clusters is
that anchor clasts are invariably greater than the D90 even though a
threshold anchor size is not adopted herein. Comparisons with existing
field data show consistency with the observed cluster attributes. Our
results thus point toward a promising DEM-based approach for charac-
terizing sediment structures in gravel-bed rivers.

Delineation of clusters is important in river science because clusters
affect the flowfield near the bed, change the bed structure and are
significant controls on sediment transport and thus bed stability
(e.g., Robert et al., 1996; Church et al., 1998; Curran and Tan, 2014b).
Essential attributes such as the spatial pattern, density, area coverage,
and dimensions may be extracted from the delineated clusters. More-
over, isolating roughness scales of gravel-bed topography is increasingly
applied in studies of surface processes such as armoring (Powell et al.,
2016; Bertin et al., 2017). With grain boundaries segmented and clus-
ters delineated, isolation of grain and microform DEMs could be per-
formed on an individual grain or cluster basis, which could potentially
provide further insights into the roughness parameterization.

Automation of our approach would be a direction for future efforts.
With the zero-level contours of the short-range FK DEM usable as an
aid to delineate grain boundaries, it is possible to streamline the
workflow by integrating novel algorithms of automated grain segmen-
tation for cluster delineation. In addition, as possible areas for improve-
ment, omni-directional variogram may be replaced by 2D variogram
surface to devise a novel, directional FK. The minimum number of
constituent grains required for a cluster may be adjusted, and a small
separation distance may be specified allowing for closely neighboring
grains, particularly some of those largest but isolated clasts, to be effec-
tively identified as abutting ones.
Acknowledgments

This workwas supported by theMinistry of Science and Technology,
Taiwan (MOST), granted to FCW (102-2221-E-002-122-MY3, 103-
2221-E-002-146-MY3, and 106-2221-E-002-074-MY3). We appreciate
Jordan Clayton, an anonymous reviewer, and Scott Lecce for thoughtful
feedback that improved the manuscript.

Appendix A. Supplementary information

Supplementary information to this article can be found online at
https://doi.org/10.1016/j.geomorph.2018.02.013.
References

Aberle, J., Nikora, V., 2006. Statistical properties of armored gravel bed surfaces. Water
Resour. Res. 42. https://doi.org/10.1029/2005WR004674.

Alary, C., Demougeot-Renard, H., 2010. Factorial kriging analysis as a tool for explaining
the complex spatial distribution of metals in sediments. Environ. Sci. Technol. 44:
593–599. https://doi.org/10.1021/es9022305.

Allaire, S.E., Lange, S.F., Lafond, J.A., Pelletier, B., Cambouris, A.N., Dutilleul, P., 2012.Multiscale
spatial variability of CO2 emissions and correlations with physico-chemical soil proper-
ties. Geoderma 170:251–260. https://doi.org/10.1016/j.geoderma.2011.11.019.

Atkinson, P.M., 2004. Resolution manipulation and sub-pixel mapping. In: de Jong, S.M.,
van der Meer, F.D. (Eds.), Remote Sensing Image Analysis: Including the Spatial
Domain. Springer, pp. 51–70.

Bertin, S., Groom, J., Friedrich, H., 2017. Isolating roughness scales of gravel-bed patches.
Water Resour. Res. 53:6841–6856. https://doi.org/10.1002/2016WR020205.

Biggs, B.J.F., Duncan, M.J., Francoeur, S.N., Meyer, W.D., 1997. Physical characterisation of
microform bed cluster refugia in 12 headwater streams, New Zealand. N. Z. J. Mar.
Freshw. Res. 31:413–422. https://doi.org/10.1080/00288330.1997.9516775.

Billi, P., 1988. A note on cluster bedform behaviour in a gravel-bed river. Catena 15:
473–481. https://doi.org/10.1016/0341-8162(88)90065-3.

Bocchi, S., Castrignanò, A., Fornaro, F., Maggiore, T., 2000. Application of factorial kriging
for mapping soil variation at field scale. Eur. J. Agron. 13:295–308. https://doi.org/
10.1016/S1161-0301(00)00061-7.

Bourennane, H., Hinschberger, F., Chartin, C., Salvador-Blanes, S., 2017. Spatial filtering of
electrical resistivity and slope intensity: enhancement of spatial estimates of a soil prop-
erty. J. Appl. Geophys. 138:210–219. https://doi.org/10.1016/j.jappgeo.2017.01.032.

Brasington, J., Vericat, D., Rychkov, I., 2012. Modeling river bed morphology, roughness,
and surface sedimentology using high resolution terrestrial laser scanning. Water
Resour. Res. 48. https://doi.org/10.1029/2012WR012223.

Brayshaw, A.C., 1984. Characteristics and origin of cluster bedforms in coarse-grained
alluvial channels. In: Koster, E.H., Steel, R.J. (Eds.), Sedimentology of Gravels and
Conglomerates, Can. Soc. Petrol. Geol, pp. 77–85.

Brayshaw, A.C., 1985. Bed microtopography and entrainment thresholds in gravel-
bed rivers. Geol. Soc. Am. Bull. https://doi.org/10.1130/0016-7606(1985)96b218:
BMAETIN2.0.CO.

Brayshaw, A.C., Frostick, L.E., Reid, I., 1983. The hydrodynamics of particle clusters and
sediment entrapment in coarse alluvial channels. Sedimentology 30:137–143.
https://doi.org/10.1111/j.1365-3091.1983.tb00656.x.

Buffin-Bélanger, T., Roy, A.G., 1998. Effects of a pebble cluster on the turbulent structure of a
depth-limited flow in a gravel-bed river. Geomorphology 25:249–267. https://doi.org/
10.1016/S0169-555X(98)00062-2.

Bunte, K., Abt, S.R., 2001. Sampling surface and subsurface particle-size distributions
in wadable gravel- and cobble-bed streams for analysis in sediment transport,
hydraulics, and streambed monitoring. General Technical Report RMRS-GTR-74.
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO (428 p.).

Butler, J.B., Lane, S.N., Chandler, J.H., 2001. Characterizationof the structureof river-bedgravels
using two-dimensional fractal analysis. Math. Geol. 33:301–330. https://doi.org/10.1023/
a:1007686206695.

Castrignanò, A., Giugliarini, L., Risaliti, R., Martinelli, N., 2000. Study of spatial relationships
among some soil physico-chemical properties of afield in central Italy usingmultivariate
geostatistics. Geoderma 97:39–60. https://doi.org/10.1016/S0016-7061(00)00025-2.

Church, M., Hassan, M.A., Wolcott, J.F., 1998. Stabilizing self-organized structures in
gravel-bed stream channels: field and experimental observations. Water Resour.
Res. 34:3169–3179. https://doi.org/10.1029/98WR00484.

https://doi.org/10.1016/j.geomorph.2018.02.013
https://doi.org/10.1029/2005WR004674
https://doi.org/10.1021/es9022305
https://doi.org/10.1016/j.geoderma.2011.11.019
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0020
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0020
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0020
https://doi.org/10.1002/2016WR020205
https://doi.org/10.1080/00288330.1997.9516775
https://doi.org/10.1016/0341-8162(88)90065-3
https://doi.org/10.1016/S1161-0301(00)00061-7
https://doi.org/10.1016/S1161-0301(00)00061-7
https://doi.org/10.1016/j.jappgeo.2017.01.032
https://doi.org/10.1029/2012WR012223
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0055
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0055
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0055
https://doi.org/10.1130/0016-7606(1985)96&lt;218:BMAETI&gt;2.0.CO
https://doi.org/10.1130/0016-7606(1985)96&lt;218:BMAETI&gt;2.0.CO
https://doi.org/10.1130/0016-7606(1985)96&lt;218:BMAETI&gt;2.0.CO
https://doi.org/10.1130/0016-7606(1985)96&lt;218:BMAETI&gt;2.0.CO
https://doi.org/10.1111/j.1365-3091.1983.tb00656.x
https://doi.org/10.1016/S0169-555X(98)00062-2
https://doi.org/10.1016/S0169-555X(98)00062-2
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0075
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0075
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0075
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0075
https://doi.org/10.1023/a:1007686206695
https://doi.org/10.1023/a:1007686206695
https://doi.org/10.1016/S0016-7061(00)00025-2
https://doi.org/10.1029/98WR00484


173F.-C. Wu et al. / Geomorphology 308 (2018) 161–174
Clayton, J.A., Pitlick, J., 2007. Spatial and temporal variations in bed load transport inten-
sity in a gravel bed river bend. Water Resour. Res. 43. https://doi.org/10.1029/
2006WR005253.

Clifford, N.J., Robert, A., Richards, K.S., 1992. Estimation of flow resistance in gravel-
bedded rivers: a physical explanation of the multiplier of roughness length. Earth
Surf. Process. Landf. 17:111–126. https://doi.org/10.1002/esp.3290170202.

Cooper, J.R., Tait, S.J., 2009. Water-worked gravel beds in laboratory flumes - a natural
analogue? Earth Surf. Process. Landf. 34:384–397. https://doi.org/10.1002/esp.1743.

Curran, J.C., Tan, L., 2014a. The effect of cluster morphology on the turbulent flows over an
armored gravel bed surface. J. Hydro Environ. Res. 8:129–142. https://doi.org/
10.1016/j.jher.2013.11.002.

Curran, J.C., Tan, L., 2014b. Effect of bed sand content on the turbulent flows associated
with clusters on an armored gravel bed surface. J. Hydraul. Eng. 140:137–148.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000810.

Curran, J.C., Waters, K.A., 2014. The importance of bed sediment sand content for the
structure of a static armor layer in a gravel bed river. J. Geophys. Res. Earth Surf.
119:1484–1497. https://doi.org/10.1002/2014JF003143.

Detert, M., Weitbrecht, V., 2012. Automatic object detection to analyze the geometry of
gravel grains – a free stand-alone tool. River Flow 2012. Taylor & Francis, London,
pp. 595–600.

Detert, M., Weitbrecht, V., 2013. User guide to gravelometric image analysis by
BASEGRAIN. In: Fukuoka, et al. (Eds.), Advances in River Sediment Research. Taylor
& Francis, London :pp. 1789–1796. http://www.basement.ethz.ch/download/tools/
basegrain.html (Jan. 2018).

Dietrich, W.E., Smith, J.D., 1984. Bed load transport in a river meander. Water Resour. Res.
20:1355–1380. https://doi.org/10.1029/WR020i010p01355.

Dobermann, A., Goovaerts, P., Neue, H.U., 1997. Scale-dependent correlations among soil
properties in two tropical lowland rice fields. Soil Sci. Soc. Am. J. 61, 1483–1496.

Dubrule, O., 2003. Geostatistics for seismic data integration in earthmodels. Distinguished
Instructor Series, No. 6. Society of Exploration Geophysicists, Tulsa, OK, USA.

Entwistle, N.S., Heritage, G.L., Johnson, K., 2008. Cluster detection and development using
terrestrial laser scanning. Geophysical Research Abstracts, 10, EGU2008-A-03497.
EGU General Assembly.

Folk, R.L., Ward, W.C., 1957. Brazos River bar, a study in the significance of grain size
parameters. J. Sediment. Res. 27:3–26. https://doi.org/10.1306/74D70646-2B21-
11D7-8648000102C1865D.

Furbish, D.J., 1987. Conditions for geometric similarity of coarse stream-bed roughness.
Math. Geol. 19:291–307. https://doi.org/10.1007/BF00897840.

Galli, A., Gerdil-Neuillet, F., Dadou, C., 1984. Factorial kriging analysis: a substitute to
spectral analysis of magnetic data. In: Verly, et al. (Eds.), Geostatistics for Natural
Resources Characterization. Reidel, Dordrecht, Netherlands, pp. 543–557.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University
Press, Oxford, UK (483 p.).

Goovaerts, P., Webster, R., 1994. Scale-dependent correlation between topsoil copper and
cobalt concentrations in Scotland. Eur. J. Soil Sci. 45:79–95. https://doi.org/10.1111/
j.1365-2389.1994.tb00489.x.

Goovaerts, P., Sonnet, P., Navarre, A., 1993. Factorial kriging analysis of springwater contents
in the Dyle River basin, Belgium. Water Resour. Res. 29:2115–2125. https://doi.org/
10.1029/93WR00588.

Goovaerts, P., Jacquez, G.M., Marcus, A., 2005a. Geostatistical and local cluster analysis
of high resolution hyperspectral imagery for detection of anomalies. Remote Sens.
Environ. 95:351–367. https://doi.org/10.1016/j.rse.2004.12.021.

Goovaerts, P., Jacquez, G.M., Greiling, D., 2005b. Exploring scale-dependent correla-
tions between cancer mortality rates using factorial kriging and population-
weighted semivariograms. Geogr. Anal. 37:152–182. https://doi.org/10.1111/j.1538-
4632.2005.00634.x.

Graham, D.J., Reid, I., Rice, S.P., 2005. Automated sizing of coarse-grained sediments:
image-processing procedures. Math. Geol. 37:1–28. http://www.sedimetrics.com
(Jan. 2018).

Hardy, R.J., Best, J.L., Lane, S.N., Carbonneau, P.E., 2009. Coherent flow structures in a
depth-limited flow over a gravel surface: the role of near-bed turbulence and influ-
ence of Reynolds number. J. Geophys. Res. Earth Surf. 114. https://doi.org/10.1029/
2007JF000970.

Hassan, M.A., Church, M., 2000. Experiments on surface structure and partial sediment
transport on a gravel bed. Water Resour. Res. 36:1885–1895. https://doi.org/
10.1029/2000WR900055.

Hassan, M.A., Reid, I., 1990. The influence of microform bed roughness elements on
flow and sediment transport in gravel bed rivers. Earth Surf. Process. Landf. 15,
739–750.

Hassan,M.A., Smith, B.J., Hogan, D.L., Luzi, D.S., Zimmermann, A.E., Eaton, B.C., 2008. Sediment
storage and transport in coarse bed streams: scale considerations. In: Habersack, et al.
(Eds.), Gravel-Bed Rivers VI: From Process Understanding to River Restoration. Elsevier,
Amsterdam, Netherland, pp. 473–496.

Heays, K.G., Friedrich, H., Melville, B.W., 2014. Laboratory study of gravel-bed cluster
formation and disintegration. Water Resour. Res. 50:2227–2241. https://doi.org/
10.1002/2013WR014208.

Hendrick, R.R., Ely, L.L., Papanicolaou, A.N., 2010. The role of hydrologic processes and geo-
morphology on themorphology and evolution of sediment clusters in gravel-bed rivers.
Geomorphology 114:483–496. https://doi.org/10.1016/j.geomorph.2009.07.018.

Hodge, R.A., 2010. Using simulated terrestrial laser scanning to analyse errors in high-
resolution scan data of irregular surfaces. ISPRS J. Photogramm. Remote Sens. 65:
227–240. https://doi.org/10.1016/j.isprsjprs.2010.01.001.

Hodge, R., Brasington, J., Richards, K., 2009. Analysing laser-scanned digital terrainmodels
of gravel bed surfaces: linking morphology to sediment transport processes and
hydraulics. Sedimentology 56:2024–2043. https://doi.org/10.1111/j.1365-3091.
2009.01068.x.
Huang, G.H., Wang, C.K., 2012. Multiscale geostatistical estimation of gravel-bed rough-
ness from terrestrial and airborne laser scanning. IEEE Geosci. Remote Sens. Lett. 9:
1084–1088. https://doi.org/10.1109/LGRS.2012.2189351.

Isaaks, E.H., Srivastava, R.M., 1989. An Introduction to Applied Geostatistics. Oxford
University Press, New York (561 p.).

Jaquet, O., 1989. Factorial kriging analysis applied to geological data from petroleum
exploration. Math. Geol. 21:683–691. https://doi.org/10.1007/BF00893316.

de Jong, C., 1995. Temporal and spatial interactions between river bed roughness, geom-
etry, bedload transport and flow hydraulics in mountain streams – examples from
Squaw Creek, Montana (USA) and Schmiedlaine/Lainbach (Upper Germany). Berl.
Geowiss. Abh. 59, 229.

de Jong, C., Ergenzinger, P., 1995. The interrelations between mountain valley form and
river-bed arrangement. In: Hickin (Ed.), River Geomorphology. Wiley, Chichester,
pp. 55–91.

Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, London (600 p.).
Karperien, A., 2013. FracLac for ImageJ. http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/

Introduction.htm, Accessed date: January 2018.
Karunatillake, S., McLennan, S.M., Herkenhoff, K.E., Husch, J.M., Hardgrove, C., Skok, J.R.,

2014. A martian case study of segmenting images automatically for granulometry
and sedimentology, part 1: algorithm. Icarus 229:400–407. https://doi.org/10.1016/
j.icarus.2013.10.001.

Kerry, R., Goovaerts, P., Haining, R.P., Ceccato, V., 2010. Applying geostatistical analysis to
crime data: car-related thefts in the Baltic states. Geogr. Anal. 42:53–77. https://doi.
org/10.1111/j.1538-4632.2010.00782.x.

Lacey, R.W.J., Roy, A.G., 2007. A comparative study of the turbulent flow field with and
without a pebble cluster in a gravel bed river. Water Resour. Res. 43. https://doi.org/
10.1029/2006WR005027.

L'Amoreaux, P., Gibson, S., 2013. Quantifying the scale of gravel-bed clusterswith spatial sta-
tistics. Geomorphology 197:56–63. https://doi.org/10.1016/j.geomorph.2013.05.002.

Lawless, M., Robert, A., 2001a. Three-dimensional flow structure around small-scale
bedforms in simulated gravel-bed environment. Earth Surf. Process. Landf. 26:
507–522. https://doi.org/10.1002/esp.195.

Lawless, M., Robert, A., 2001b. Scales of boundary resistance in coarse-grained channels:
turbulent velocity profiles and implications. Geomorphology 39:221–238. https://doi.
org/10.1016/S0169-555X(01)00029-0.

Lv, J., Liu, Y., Zhang, Z., Dai, J., 2013. Factorial kriging and stepwise regression approach to
identify environmental factors influencing spatialmulti-scale variability of heavymetals
in soils. J. Hazard. Mater. 261:387–397. https://doi.org/10.1016/j.jhazmat.2013.07.065.

Ma, Y.Z., Royer, J.J., Wang, H., Wang, Y., Zhang, T., 2014. Factorial kriging for multiscale
modelling. J. South. Afr. Inst. Min. Metall. 114, 651–657.

Mao, L., 2012. The effect of hydrographs on bed load transport and bed sediment spatial
arrangement. J. Geophys. Res. Earth Surf. 117. https://doi.org/10.1029/2012JF002428.

Mao, L., Cooper, J.R., Frostick, L.E., 2011. Grain size and topographical differences between
static and mobile armour layers. Earth Surf. Process. Landf. 36:1321–1334. https://
doi.org/10.1002/esp.2156.

Marion, A., Tait, S.J., McEwan, I.K., 2003. Analysis of small-scale gravel bed topography
during armoring. Water Resour. Res. 39. https://doi.org/10.1029/2003WR002367.

Matheron, G., 1971. The theory of regionalized variables and its applications. Cahiers du
Centre de Morphologie Mathématique, s. 1. Fontainebleau, France.

Matheron, G., 1982. Pour une Analyse Krigeante de Données Régionalisées: Note interne,
N-732. Centre de Géostatistique, Fontainebleau, France (22 p.).

Milan, D., Heritage, G., 2012. LiDAR and ADCP use in gravel-bed rivers: advances since
GBR6. In: Church, et al. (Eds.), Gravel-Bed Rivers: Processes, Tools, Environments.
Wiley, Chichester, UK, pp. 286–302.

Nikora, V.I., Goring, D.G., Biggs, B.J.F., 1998. On gravel-bed roughness characterization.
Water Resour. Res. 34:517–527. https://doi.org/10.1029/97WR02886.

Oldmeadow, D.F., Church, M., 2006. A field experiment on streambed stabilization
by gravel structures. Geomorphology 78:335–350. https://doi.org/10.1016/j.
geomorph.2006.02.002.

Oliver, M.A., Webster, R., 1986. Semi-variograms for modelling the spatial pattern of land-
form and soil properties. Earth Surf. Process. Landf. 11:491–504. https://doi.org/
10.1002/esp.3290110504.

Oliver, M.A., Webster, R., Slocum, K., 2000. Filtering SPOT imagery by kriging analysis. Int.
J. Remote Sens. 21:735–752. https://doi.org/10.1080/014311600210542.

Paola, C., Seal, R., 1995. Grain size patchiness as a cause of selective deposition and down-
stream fining. Water Resour. Res. 31, 1395–1407.

Papanicolaou, A.N., Strom, K., Schuyler, A., Talebbeydokhti, N., 2003. The role of sediment
specific gravity and availability on cluster evolution. Earth Surf. Process. Landf. 28:
69–86. https://doi.org/10.1002/esp.427.

Papanicolaou, A.N.T., Tsakiris, A.G., Strom, K.B., 2012. The use of fractals to quantify themor-
phology of cluster microforms. Geomorphology 139–140:91–108. https://doi.org/
10.1016/j.geomorph.2011.10.007.

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Comput. Geosci.
30:683–691. https://cran.r-project.org/package=gstat (Jan. 2018).

Piedra, M.M., Haynes, H., Hoey, T.B., 2012. The spatial distribution of coarse surface grains
and the stability of gravel river beds. Sedimentology 59:1014–1029. https://doi.org/
10.1111/j.1365-3091.2011.01290.x.

Powell, D.M., Ockelford, A., Rice, S.P., Hillier, J.K., Nguyen, T., Reid, I., Tate, N.J., Ackerley, D.,
2016. Structural properties of mobile armors formed at different flow strengths in
gravel-bed rivers. J. Geophys. Res. Earth Surf. 121:1494–1515. https://doi.org/
10.1002/2015JF003794.

Reid, I., Frostick, L.E., Brayshaw, A.C., 1992. Microform roughness elements and the selec-
tive entrainment and entrapment of particles in gravel-bed rivers. In: Billi, et al.
(Eds.), Dynamics of Gravel-Bed Rivers. Wiley, Chichester, pp. 253–276.

Reis, A.P., Sousa, A.J., Ferreira Da Silva, E., Patinha, C., Fonseca, E.C., 2004. Combining
multiple correspondence analysis with factorial kriging analysis for geochemical

https://doi.org/10.1029/2006WR005253
https://doi.org/10.1029/2006WR005253
https://doi.org/10.1002/esp.3290170202
https://doi.org/10.1002/esp.1743
https://doi.org/10.1016/j.jher.2013.11.002
https://doi.org/10.1016/j.jher.2013.11.002
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000810
https://doi.org/10.1002/2014JF003143
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0125
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0125
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0125
http://www.basement.ethz.ch/download/tools/basegrain.html
http://www.basement.ethz.ch/download/tools/basegrain.html
https://doi.org/10.1029/WR020i010p01355
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0140
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0140
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0145
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0145
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0150
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0150
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0150
https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
https://doi.org/10.1007/BF00897840
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0165
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0165
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0165
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0170
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0170
https://doi.org/10.1111/j.1365-2389.1994.tb00489.x
https://doi.org/10.1111/j.1365-2389.1994.tb00489.x
https://doi.org/10.1029/93WR00588
https://doi.org/10.1029/93WR00588
https://doi.org/10.1016/j.rse.2004.12.021
https://doi.org/10.1111/j.1538-4632.2005.00634.x
https://doi.org/10.1111/j.1538-4632.2005.00634.x
http://www.sedimetrics.com
https://doi.org/10.1029/2007JF000970
https://doi.org/10.1029/2007JF000970
https://doi.org/10.1029/2000WR900055
https://doi.org/10.1029/2000WR900055
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0210
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0210
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0210
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0215
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0215
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0215
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0215
https://doi.org/10.1002/2013WR014208
https://doi.org/10.1002/2013WR014208
https://doi.org/10.1016/j.geomorph.2009.07.018
https://doi.org/10.1016/j.isprsjprs.2010.01.001
https://doi.org/10.1111/j.1365-3091.2009.01068.x
https://doi.org/10.1111/j.1365-3091.2009.01068.x
https://doi.org/10.1109/LGRS.2012.2189351
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0245
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0245
https://doi.org/10.1007/BF00893316
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0255
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0255
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0255
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0255
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0260
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0260
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0260
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0265
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
https://doi.org/10.1016/j.icarus.2013.10.001
https://doi.org/10.1016/j.icarus.2013.10.001
https://doi.org/10.1111/j.1538-4632.2010.00782.x
https://doi.org/10.1111/j.1538-4632.2010.00782.x
https://doi.org/10.1029/2006WR005027
https://doi.org/10.1029/2006WR005027
https://doi.org/10.1016/j.geomorph.2013.05.002
https://doi.org/10.1002/esp.195
https://doi.org/10.1016/S0169-555X(01)00029-0
https://doi.org/10.1016/S0169-555X(01)00029-0
https://doi.org/10.1016/j.jhazmat.2013.07.065
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0310
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0310
https://doi.org/10.1029/2012JF002428
https://doi.org/10.1002/esp.2156
https://doi.org/10.1002/esp.2156
https://doi.org/10.1029/2003WR002367
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0330
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0330
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0335
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0335
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0340
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0340
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0340
https://doi.org/10.1029/97WR02886
https://doi.org/10.1016/j.geomorph.2006.02.002
https://doi.org/10.1016/j.geomorph.2006.02.002
https://doi.org/10.1002/esp.3290110504
https://doi.org/10.1002/esp.3290110504
https://doi.org/10.1080/014311600210542
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0365
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0365
https://doi.org/10.1002/esp.427
https://doi.org/10.1016/j.geomorph.2011.10.007
https://doi.org/10.1016/j.geomorph.2011.10.007
https://cran.r-project.org/package=gstat
https://doi.org/10.1111/j.1365-3091.2011.01290.x
https://doi.org/10.1111/j.1365-3091.2011.01290.x
https://doi.org/10.1002/2015JF003794
https://doi.org/10.1002/2015JF003794
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0395
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0395
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0395


174 F.-C. Wu et al. / Geomorphology 308 (2018) 161–174
mapping of the gold-silver deposit at Marrancos (Portugal). Appl. Geochem. 19:
623–631. https://doi.org/10.1016/j.apgeochem.2003.09.003.

Rice, S.P., Buffin-Bélanger, T., Reid, I., 2014. Sensitivity of interfacial hydraulics to the
microtopographic roughness of water-lain gravels. Earth Surf. Process. Landf. 39:
184–199. https://doi.org/10.1002/esp.3438.

Robert, A., 1988. Statistical properties of sediment bed profiles in alluvial channels. Math.
Geol. 20:205–225. https://doi.org/10.1007/BF00890254.

Robert, A., 1991. Fractal properties of simulated bed profiles in coarse-grained channels.
Math. Geol. 23:367–382. https://doi.org/10.1007/BF02065788.

Robert, A., Roy, A.G., DeSerres, B., 1996. Turbulence at a roughness transition in a depth
limited flow over a gravel bed. Geomorphology 16:175–187. https://doi.org/
10.1016/0169-555X(95)00143-S.

Sandjivy, L., 1984. The factorial kriging analysis of regionalized data: its application to
geochemical prospecting. In: Verly, et al. (Eds.), Geostatistics for Natural Resources
Characterization. Reidel, Dordrecht, Netherlands, pp. 559–571.

Smart, G.M., Duncan, M.J., Walsh, J.M., 2002. Relatively rough flow resistance equations.
J. Hydraul. Eng. 128:568–578. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:
6(568).

Strom, K.B., Papanicolaou, A.N., 2008. Morphological characterization of clustermicroforms.
Sedimentology 55:137–153. https://doi.org/10.1111/j.1365-3091.2007.00895.x.

Strom, K.B., Papanicolaou, A.N., 2009. Occurrence of cluster microforms in mountain rivers.
Earth Surf. Process. Landf. 34:88–98. https://doi.org/10.1002/esp.1693.

Strom, K., Papanicolaou, A.N., Evangelopoulos, N., Odeh, M., 2004. Microforms in
gravel bed rivers: formation, disintegration, and effects on bedload transport.
J. Hydraul. Eng. 130:554–567. https://doi.org/10.1061/(ASCE)0733-9429(2004)
130:6(554).
Strom, K.B., Papanicolaou, A.N., Constantinescu, G., 2007. Flow heterogeneity over 3D
cluster microform: laboratory and numerical investigation. J. Hydraul. Eng. 133:
273–287. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:3(273).

VanMeirvenne, M., Goovaerts, P., 2002. Accounting for spatial dependence in the process-
ing of multi-temporal SAR images using factorial kriging. Int. J. Remote Sens. 23:
371–387. https://doi.org/10.1080/01431160010014800.

Wang, C.K., Wu, F.C., Huang, G.H., Lee, C.Y., 2011. Mesoscale terrestrial laser scanning of
fluvial gravel surfaces. IEEE Geosci. Remote Sens. Lett. 8:1075–1079. https://doi.org/
10.1109/LGRS.2011.2156758.

Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientists. 2nd ed. Wiley,
Chichester (330 p.).

Wen, R., Sinding-Larsen, R., 1997. Image filtering by factorial kriging—sensitivity analysis
and application to Gloria side-scan sonar images. Math. Geol. 29:433–468. https://
doi.org/10.1007/BF02775083.

Wittenberg, L., 2002. Structural patterns in coarse gravel river beds: typology, survey and
assessment of the roles of grain size and river regime. Geogr. Ann. Ser. A-Physical
Geogr. 84A:25–37. https://doi.org/10.1111/j.0435-3676.2002.00159.x.

Wittenberg, L., Newson, M.D., 2005. Particle clusters in gravel-bed rivers: an experimental
morphological approach to bed material transport and stability concepts. Earth Surf.
Process. Landf. 30:1351–1368. https://doi.org/10.1002/esp.1184.

Wittenberg, L., Laronne, J.B., Newson, M.D., 2007. Bed clusters in humid perennial and
Mediterranean ephemeral gravel-bed streams: the effect of clast size and bed mate-
rial sorting. J. Hydrol. 334:312–318. https://doi.org/10.1016/j.jhydrol.2006.09.028.

Yao, T., Mukerji, T., Journel, A.G., Mavko, G., 1999. Scale matching with factorial
kriging for improved porosity estimation from seismic data. Math. Geol. 31:23–46.
https://doi.org/10.1023/A:1007589213368.

https://doi.org/10.1016/j.apgeochem.2003.09.003
https://doi.org/10.1002/esp.3438
https://doi.org/10.1007/BF00890254
https://doi.org/10.1007/BF02065788
https://doi.org/10.1016/0169-555X(95)00143-S
https://doi.org/10.1016/0169-555X(95)00143-S
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0425
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0425
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0425
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(568)
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(568)
https://doi.org/10.1111/j.1365-3091.2007.00895.x
https://doi.org/10.1002/esp.1693
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:6(554)
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:6(554)
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:3(273)
https://doi.org/10.1080/01431160010014800
https://doi.org/10.1109/LGRS.2011.2156758
https://doi.org/10.1109/LGRS.2011.2156758
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0465
http://refhub.elsevier.com/S0169-555X(18)30061-8/rf0465
https://doi.org/10.1007/BF02775083
https://doi.org/10.1007/BF02775083
https://doi.org/10.1111/j.0435-3676.2002.00159.x
https://doi.org/10.1002/esp.1184
https://doi.org/10.1016/j.jhydrol.2006.09.028
https://doi.org/10.1023/A:1007589213368

	Delineation of gravel-�bed clusters via factorial kriging
	1. Introduction
	2. Factorial kriging
	3. Case study
	3.1. Study site
	3.2. DEM data

	4. DEM-based delineation of clusters
	4.1. Decomposition of short- and long-range scales
	4.2. Segmentation of individual grains
	4.3. Identification of potential clusters
	4.4. Delineation of individual clusters

	5. Results and discussion
	5.1. Delineated clusters
	5.2. Comparison with existing field data

	6. Conclusions
	Acknowledgments
	Appendix A. Supplementary information
	References




