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In the present study, we develop a three-dimensional two-way coupled Euler–Euler model to simulate
the dilute suspensions of fine particles. In addition to the inter-phase drag term, commonly appearing
in standard EE formulations, the model formulation includes inter-phase momentum exchange resulting
from added mass, which is not negligible in solid–liquid systems. Moreover, through a two-phase pres-
sure projection method, the present numerical model ensures that the incompressibility of the solid–
liquid mixture is also taken into consideration. A series of numerical experiments on the particle-induced
Rayleigh–Taylor (RT) instability is carried out to investigate bulk mixing attributable to the initial con-
centration of particles, covering a range of suspension from dilute to dense (Oð0:001� 0:05Þ in volume
fraction). This study identifies deviations in the current two-phase simulations by comparing them with
single-phase approximations. Our results indicate that the deviations are caused by non-equilibrium par-
ticle inertia and mixture incompressibility. In the dilute suspension, it is found that the non-equilibrium
particle inertia enhances vertical motion of bubbles and spikes, resulting in a higher efficiency in vertical
mixing, compared to the results from single-phase simulations. However, as initial concentration
increases, the influence of mixture incompressibility becomes more pronounced and is able to induce
a significant suppression of upward-moving motion of bubbles, which in turn decreases the efficiency
of vertical mixing.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The suspension of fine sediment is an important geophysical
phenomenon with critical implications in geological sciences as
well as in countless engineering practices. Recent advances in com-
putational power have made numerical simulation an important
tool in the study of suspended sediment. Strategies for the numer-
ical simulation of small-scale processes are generally categorized
into two types. The first type employs three-dimensional turbu-
lence-resolving flow solvers, most of which employ direct numer-
ical simulation (DNS), capable of revealing the details of turbulent
features in particle-laden turbulent flows. For example, DNS has
been used to study the dynamics of underwater turbidity currents,
with particular a focus on interactions between turbulence and
particle-induced stratification (e.g. Necker et al., 2002, 2006,
2009a,b, 2012). These studies apply single-phase approximation
to particles under the assumptions of equilibrium state and sca-
lar-limit (zero volume) conditions. As a result, this approach is
applicable only under conditions of the very dilute suspension,
which are easily violated in realistic flow problems. The second
category involves the utilization of the Euler–Euler (EE) two phase
model, which treats the sediment phase as a continuum. The EE ap-
proach takes non-equilibrium particle inertia into account, thereby
modeling sediment transport in a more precise manner to a wider
range of concentrations (Balachandar and Eaton, 2010). This ap-
proach has recently been applied to the study of suspension prob-
lems in unidirectional open channels flows (e.g. Greimann and
Holly, 2001, 2003a, 2010, 2011) as well as oscillatory flows (e.g.
Hsu et al., 2003b,a, 2005). These studies simplify the governing
equations to one- or two-dimensional equations in conjunction
with the k� � equations for turbulence closure. These are em-
ployed mainly for analysis, rather than resolving details of flow
features. A modified EE modeling approach is presented in Cantero
et al. (2008), in which the result derived in Ferry and Balachandar
(2001) is employed to reformulate an EE model to study turbidity
currents in two-dimensional settings. The model accounts for
non-equilibrium particle inertia while retaining the computational
efficiency of the single-phase method. However, without consider-
ing feedback of non-equilibrium particle inertia to the carrier flow
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and volumes occupied by particles, the model by Cantero et al.
(2008) only applies to dilute suspensions.

Under the assumptions of small particle size and low concentra-
tion, Chou et al. (2013) present a two-way coupled Euler–Euler
(EE) formulation to describe the motions of two-phase flow com-
prising suspended fine particles and liquid. The former assumption
enables the use of Stokes drag to represent the only inter-phase
momentum exchange that depends on the local velocity difference
between two phases. This is a standard approach used in the study
of dispersed two-phase flow systems. The second assumption is
that the effect of inter-particle stresses due to particle collision
and friction are negligible. In the present study, the formulation
is discretized using the finite-volume method, to develop a
three-dimensional numerical model capable of capturing impor-
tant features of two-phase particle-laden turbulence for fine sus-
pension problems. In addition to considering Stokes drag, as in
the standard framework of EE modeling, the proposed numerical
model takes added mass into account and ensures the incompress-
ibility of the solid–liquid mixture. The numerical model is then
employed to study the Rayleigh–Taylor (RT) instability driven by
inertia particles.

The RT instability occurs at the interface vertically separating a
high-density fluid (top) and a low-density fluid (bottom), at which
the perturbation grows in a self-similar manner to form a mixing
layer between two fluids with different densities. During the
growth of the mixing layer, the low density (ql) fluid penetrates
into the high density (qh) fluid as bubbles while the high density
fluid penetrates into the low density fluid to form spikes. The mov-
ing speed of the bubbles and spikes as well as the entrainment
from the ambient fluid (in the miscible case) are responsible for
the bulk mixing of the reversed stratified flow. A well-known rela-
tionship describing the evolution of the thickness (h) of the mixing
layer is written as (Read, 1984; Youngs, 1984; Linden et al., 1994;
Young et al., 2001; Dimonte et al., 2004)
h ¼ aAgt2
; ð1Þ
where A ¼ qu � qlð Þ= qu þ qlð Þ is the Atwood number and a is a con-
stant coefficient. One important focus of previous studies has been
the value of a, which is an important parameter indicating the bulk
mixing. This depends on the dynamics of bubbles and spikes as well
as the experimental setting. A comprehensive survey of experimen-
tal data suggests that a lies within the range between 0.04 and 0.08
with a mean of about 0.057 (Dimonte et al., 2004). In the context of
sediment suspension, high-density fluids can result from the pres-
ence of fine sediment in the water column, which commonly forms
in the river upstream through erosion. When the energetic dis-
charge of sediment-containing riverine flow encounters a relatively
still and clear water body without strong background stratification,
the particle-induced RT instability can occur, leading to large-scale
vertical convection. The resulting convective velocity is far greater
than the settling velocity calculated using the Stokes’ law for indi-
vidual particles. This is a dominant sedimentation process found
in lakes, reservoirs, and estuaries (Bradley, 1965). The RT instability
has been extensively studied for immiscible and miscible cases
using both numerical and experimental methods (see Dimonte
et al., 2004 for a comprehensive literature survey). Studies on the
particle-induced RT instability have been focused on the experi-
mental observation (Hoyal et al., 1999; Maxworthy, 1999; Parsons
et al., 2001) and theoretical analysis (Burns and Meiburg, 2012),
and numerical studies have yet to be conducted. This study per-
forms a series of three-dimensional numerical simulations of the
particle-induced RT instability to investigate flow features and bulk
mixing behavior. Through a comparison to the single-phase approx-
imation, we aim to address the influence of non-equilibrium
particle inertia and mixture incompressibility in bulk mixing, parti-
cle accumulation, and flow energetics.

The rest of the paper is organized as follows. In Section 2, we
briefly review the proposed mathematical formulation and numer-
ical method is presented. In Section 3, the domain setting and
simulation parameters are presented. In Section 4, we summarize
two-phase effects derived in the theoretical framework. Simulation
results are discussed in Section 5, and conclusions are provided in
Section 6.

2. Mathematical formulation and numerical model

Under the assumptions of small particle size and low concentra-
tion, Chou et al. (2013) presented a two-way coupled momentum
equations of the Euler–Euler (EE) formulation as follows:
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where subscripts c and d indicate the continuous and dispersed
(particle) phases, the overbar refers to the phase average, / is the
volumetric concentration of the dispersed phase, p is the pressure,
m is the kinematic viscosity of clear water, s is the specific density
of the solid particle, g is the gravitational acceleration, RRe is the
Reynolds stress arising from variations in the sub-grid scale (SGS),
sp is the particle relaxation time, and A is a partitioning matrix
resulting from the added mass effect, written as
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In Eq. (2), the particle relaxation time (sp) is obtained according
to Stokes’ law as follows:

sp ¼
sd2

p

18m
; ð4Þ

where dp is the particle diameter. An important feature of Eq. (2)
with (3) is that, unlike existing equations originally formulated
for solid–gas systems, the present two-phase formulation includes
the effects of added mass, which are not negligible when s ¼ Oð1Þ,
as in solid–liquid systems. Unlike most existing EE momentum for-
mulations in two-phase studies on sediment suspension in which
calculations are made based on the conservative quantities /ud

and 1� /ð Þuc (e.g. Greimann and Holly, 2001, 2003b,a, 2005,
2010, 2011), eliminating the dependence on / in Eq. (2) ensures
the well-posed grid-resolving velocity field of the dispersed phase,
even when / is zero. The present format, as presented in other stud-
ies on two-phase flow (e.g. Drew and Passman, 1998, 2008), is ob-
tained through the simple manipulation of its conservative form
using mass balance, which theoretically provides the same results.

The aforementioned mathematical formulations are imple-
mented in an incompressible flow solver, which is originally devel-
oped by Zang et al. (1994) and parallelized by Cui and Street (2001)
to solve the singe-phase flow problems. In this code, the finite-
volume method is used to discretize the governing equations
except for the convective terms, which are discretized using
second-order central differences. The convective terms in the
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momentum equations are discretized using a variation of QUICK
(quadratic upstream interpolation for convective kinematics)
(Leonard, 1979; Perng and Street, 1989) and the convective terms
in the scalar transport equation are discretized using SHARP
(simple high accuracy resolution program) (Leonard, 1988). This
flow solver has been applied to a variety of problems related to
environmental flow, such as coastal upwelling (Zang and Street,
1995; Cui and Street, 2004), rotating convective flow (Cui and
Street, 2001), internal waves (Fringer and Street, 2003; Venayaga-
moorthy and Fringer, 2006, 2007), surface gravity wave (Hodges
and Street, 1999), and sediment transport (Zedler and Street,
2001; Zedler and Street, 2006; Chou and Fringer, 2008; Chou and
Fringer, 2010). The large eddy simulation in conjunction with a dy-
namic mixed model for the SGS turbulence closure is employed to
simulate turbulent flow. Here, in order to simplify the problem
and avoid additional effort in solving the closure problems in
particle-laden turbulence, we neglect the Reynolds stresses and
focus on the grid-resolving two-phase coupling effects.

Following Kim and Moin (1985) and Zang et al. (1994), the
second-order Adams–Bashforth method is employed for the
time-advancement scheme for all terms that do not associate
either diffusion or the SGS model, and the Crank–Nicolson method
is employed for diffusion terms. The flow solver employs the frac-
tional-step method, in which the predicted velocity field is cor-
rected by the projection of the pressure gradient. The pressure
field is solved by enforcing zero divergence to the velocity field
of the new time step, thereby resulting in a Poisson-type pressure
solver with the divergence of the intermediate mixture velocity as
the source. In the computation of two-phase flow, zero divergence
must be applied to mixture velocity, i.e. r � /ud þ 1� /ð Þuc½ � ¼ 0.
As a result, a Poisson equation to solve the non-Boussinesq pres-
sure is written as
1
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and the velocity at the new time step, t ¼ nþ 1, is then corrected
with
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Thus, incompressibility is applied to the solid–liquid mixture,
rather than only to the continuous phase, as in a number of previ-
ous studies (e.g. Cantero et al., 2008, 2009). As demonstrated in the
following numerical examples, the effect of mixture incompress-
ibility becomes increasingly important as particle concentration
increases.
3. Numerical simulation of particle-induced Rayleigh–Taylor
instability

We employ the present EE model to investigate the particle-in-
duced RT instability and subsequent convective processes. Chou
et al. (2013) presented the simple laminar case of an individual
bubble. This study focuses on the case involving turbulence to
examine the two-phase interaction resulting from the particle-in-
duced RT instability, and conducted single-phase simulations for
the same problem settings. This enables us to differentiate the
effects of the two-phase coupling, thus determining its importance
in detailed flow dynamics and vertical bulk mixing. The domain
setup and results are presented in the following.
3.1. Domain setup and parameters

Simulations are carried out in a three-dimensional domain of
size L�W � 2H ¼ 0:08 m �0:08 m �0:12 m, with the grid resolu-
tion given by Nx � Ny � Nz ¼ 128� 128� 192. The gravitational
force acts along the z-direction, and the z-coordinate starts from
z ¼ �H to H. Hereafter, we use the half depth H as the dimensional
parameter to normalize the spatial scales. Particle diameter,
dp ¼ 40 lm, is used in all simulations. Each run is initialized with
a sediment-containing layer in the upper half region and clear
water in the lower half of the domain. Three different initial con-
centrations, /0 ¼ 0:0032;0:0128, and 0:0512, are used, resulting
in a total of six cases for comparison. Strictly speaking, the single
phase approach is valid only for / ¼ O 0:001ð Þ. However, in realistic
problems of environmental flow, fine particle suspension can eas-
ily reach / ¼ O 0:01ð Þ. Hence, we select a concentration of Oð0:001Þ,
which is within the concentration range for which single-phase
approximation is valid. The case /0 ¼ 0:0128 is roughly the limit
of the range, while /0 ¼ 0:0512 is far beyond the limit, showing
the greatest deviation from the single-phase approximation. The
interface separating the sediment-containing layer and the clear
water layer is initially flat. In order to trigger the instability at
the interface, flow in the sediment-containing (upper half) region
is initialized with a weak, decaying homogeneous turbulence field,
associated with the turbulent kinetic energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2
p

¼
O 0:0001 m2 s�2
	 


. Rather than providing initial multi-mode pertur-
bation at the interface as in most RT studies (e.g. Youngs, 1984,
1991, 2001, 2004), we initiate flow perturbation based on the idea
that the sediment-containing layer must present turbulence to
support suspension (Necker et al., 2002). The periodic boundary
condition is applied to all horizontal boundaries, such that no lat-
eral wall would be encountered. There is no sediment inflow flux at
the top boundary, while sediment is allowed to deposit at the bot-
tom, which results in excessive accumulation at the bottom-most
cell. Particularly in two-phase simulations, this may lead to a
blow-up of the simulation. Therefore, in each time step, an adjust-
ment for the concentration in the bottom-most cell, /B, needs to be
made based on simple mass balance as

/B;new ¼
/BDzB þwd;B/BDt
DzB þ 1

1�pr wd;B/BDt
¼ /B þ

wd;B/BDt
DzB

1� /B
1�pr
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1þ 1

1�pr
wd;B/BDt

DzB

; ð7Þ

where wd is the vertical component of the dispersed-phase velocity,
subscript B indicates the bottom-most cell, Dz is the height of the
cell, and pr is the porosity of the depositing material and equals
to 0.5 in the present study. At the bottom boundary, the condition
of zero penetration is employed for the solid wall. Application of
Eq. (7) is equivalent to removing the deposited sediment from the
bottom-most cell.
4. Two-phase effects

Prior to the discussion of the present simulation results, it is
worthwhile to summarized the two-phase effects that make the
present simulation results to deviate from the single-phase
approximation on the theoretical basis, which are described as
follows:

1. Non-equilibrium particle inertia (NEPI): As the dispersed particles
reach the equilibrium state, in which the gravity force balances
the Stokes drag, i.e.
ud ¼ uc �ws;0ê3; ð8Þ
where ws;0 ¼ spg0 is the settling velocity (g0 ¼ gðs� 1Þ=s). As the
deviation of particle inertia from its equilibrium state is concerned,
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it was first presented in Ferry and Balachandar (2001) and also de-
rived in the companion study (Chou et al., 2013) that in the dilute
case, the velocity of the dispersed phase (ud) can be written as
Fig. 1.
slice in
ud ¼ uc �ws;0ê3 þ sp 1� 1
s

 �
Duc

Dt
: ð9Þ
Therefore, it can be seen from Eq. (9) that NEPI results from the
acceleration of the carrier flow.
2. NEPI effect in the carrier flow: It can also be shown that one can

substitute Eq. (9) into the continuous-phase momentum equa-
tion of the two-phase system to obtain (Chou et al., 2013)
Duc
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¼ Duc
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where the first term at the RHS is the equilibrium-state (i.e Eq. (8)
applies) motion of the carrier flow. It should be noted that the
deviation from the equilibrium-state motion, the second term at
the RHS of Eq. (10), becomes increasingly important as the particle
Iso-surfaces of normalized concentration /=/0 ¼ 0:9 at the interface between the
the z-direction at four time steps in the two-phase simulation with dp ¼ 40 lm
volumetric concentration (/) increases. This differs from the NEPI
effect in the dispersed phase in that the latter effect is independent
of the local concentration.
3. Mixture incompressibility: The present model ensures incom-

pressibility of the mixture, rather than only the continuous
phase. The latter case assumes that sediment particles do not
occupy any volume, which is an appropriate approximation
only when / is very small. One can easily recognize the differ-
ence by examining the pressure Poisson solver in the computa-
tional procedure presented in Section 2. In other words, without
considering the non-Boussinesq effect, Eq. (5) can be reduced to
sedimen
and /0
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t containing layer and the clear water layer and 2-D contours at the central
¼ 0:0128.
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where pnþ1
0 is the pressure field obtained by solving the incompress-

ibility for the continuous phase from the same predicted intermedi-
ate velocity field (denoted by the superscript �). Substitution of
pressure obtained from Eq. (11) into the continuous- and
dispersed-phase momentum equations gives an additional pressure
gradient to each phase, reducing downward moving velocities.
5. Results and discussion

5.1. Instability and mixing

Snapshots of concentrations along with iso-surfaces at four rep-
resentative time instants are presented in Fig. 1 to illustrate the
evolution of the mixing layer. At the initial stage, irregular pertur-
bations in the interface are triggered by the initial turbulence, as
shown in Fig. 1a. Due to the randomness of the initial flow field,
the initial interface perturbations are associated with a broad-band
wavelength distribution k=H ¼ 0:10� 0:066. Soon after, the ampli-
tude grows and small-wavelength perturbations merge to form
larger perturbations with k=H ¼ 0:12� 0:070. Small flow struc-
tures continuously merge to form large plumes, exhibiting strong
vertical motions (see Fig. 1c and d).

As previously mentioned, Eq. (1) has been used to describe the
evolution of the mixing height as a function of time. In the present
study, a consistent value a � 0:05 is obtained, which is in good
agreement with previous studies on the density-driven RT instabil-
ity. Thus, a non-dimensional time s is obtained by normalizing
time with T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H= a0Agð Þ

p
(a0 ¼ 0:05), which estimates how long

it takes for the mixing layer to span the half domain height. In
addition, a dimensional parameter for velocity is obtained with
U ¼ H=T . Plotting the time evolution of profiles of horizontal aver-
aged concentration, h/i, enables a comparison of mixing layer
growth for each case as presented in Fig. 2. In each panel of the fig-
ure, it is found that after the mixing height reaches its maximum
value allowable in the domain (s > 1), the profiles tend to become
uniform. During this time period, the presence of the bottom wall
promotes local accumulation in near-bottom regions. Eventually,



Y.-J. Chou et al. / International Journal of Multiphase Flow 64 (2014) 44–54 49
the profiles reach a quasi-steady state and then slowly evolve with
time. Because no sediment supply is provided at the top boundary,
in addition to the half-depth interface that is subject to the RT
instability, the other interface is found to progressively move
downward from the top during the initial stage, which can be
clearly seen in the case of /0 ¼ 0:0032 in Fig. 2.

The mixing height, h, can be obtained by measuring the half dis-
tance between h/i=/0 ¼ 0 and 1 of the h/i profiles in Fig. 2. Evolu-
tion of h with respect to t2=T2 for different /0 before the thickness
of the mixing layer reaches the domain height is plotted in Fig. 3.
As a ¼ a0 corresponds to the diagonal straight line starting from
the origin, it can be seen from Fig. 3 that a ranges from 0:4 to
0:6 in the present cases. In both single-phase and two-phase sim-
ulations, cases of /0 ¼ 0:0032 and 0:0128 show roughly the same
growth rate of h (i.e. the same a), but the two-phase simulation
with /0 ¼ 0:0512 shows a slower growth rate compared to the sin-
gle-phase case, particularly after t2=T2 > 0:45. This is mainly
caused by the NEPI effect in the continuous phase and mixture
incompressibility, details of which will be discussed when flow
energetics is analyzed in Section 5.3. Compared to denser cases,
the case of /0 ¼ 0:0032 shows a relatively slow growth rate of h.
The high growth rate of the mixing layer when /0 ¼ 0:0128 and
0:0512 can be attributed to the resulting strong turbulence, which
enhances vertical mixing. In contrast, the RT instability of the most
dilute case, /0 ¼ 0:0032, does not generate evident turbulence. The
lack of strong turbulent flow field when /0 ¼ 0:0032 can be
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Fig. 4. Snapshots of normalized concentration contours at th
demonstrated from the absence of the k�5=3 region in the energy
spectrum shown in Fig. 8 for /0 ¼ 0:0032.

Mixing in the upper layer is dominated by the vertical motion of
bubbles carrying clear low-density fluid from the lower half region.
In order to obtain more insights into the dynamics of bubbles,
Fig. 4 presents snapshots of the concentrations from both single-
phase and two-phase simulations with different initial concentra-
tions at the same time, s ¼ 0:94. It can be seen that, as /0 increases
(0:0128 and 0:0512), the bubble do not have geometry as well de-
fined as in the dilute case, usually appearing with geometric irreg-
ularities, as shown in Fig. 2f. Moreover, a comparison of different
/0 in Fig. 2 reveals that as /0 increases, flow is associated with
structures with greater fineness. The difference between the dilute
and dense cases is due to higher concentrations of sediment pro-
viding greater inter-phase drag, as it is entrained into bubbles,
which in turn dampen the vertical motion more rapidly than in
the dilute case. In such cases, bubbles carrying clear water soon
blend with ambient turbid fluid, resulting in the rapid dissipation
of bubbles. Although this enhances local mixing, as seen from the
darker color of the turbid layer in the dense case compared to
the dilute case in Fig. 2, the quick entrainment of sediment into
bubbles reduces the bulk mixing efficiency through the suppres-
sion of vertical motion.

In addition to the inter-phase drag, the high dissipation rate of
upward moving bubbles in the dense case is due to the large
volume fraction of sediment that suppresses vertical motion of
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e central slice (y=H ¼ 0:67) for all six cases at s ¼ 0:94.



Fig. 5. Top panel: Iso-surfaces of /=/0 ¼ 0:8 in the case of /0 ¼ 0:0032 at s ¼ 0:79,
showing the three-dimensional geometry of rising bubbles. Bottom panel: A central
slice at y=H ¼ 0:72 in the top panel superimposed with normalized velocity vectors.
The filled gray contours represent w�cd . The concentration field is shown using black
contour lines.
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bubbles and spikes due to incompressibility of the solid–liquid
mixture. This effect is critical, and in the present study, it is cap-
tured using a two-phase projection method that takes the particle
volume into account. This adds additional upward pressure gradi-
ents, /0wcd and /0wcd=s, to the continuous phase and dispersed
phase, respectively (see Eq. (11)). This lowers the falling speed of
spikes formed by the high-concentration turbid fluid, slowing
down the interfacial convective process resulting from the RT
instability, thereby reducing the mixing efficiency.

5.2. Excessive accumulation

The present two-phase also differs from the single-phase meth-
od with regard to additional local accumulation. It is well-known
that, in dispersed two-phase systems, particles tend to segregate
from regions of high vorticity and aggregate in regions of low vor-
ticity and high strain rate. This phenomenon has been extensively
studied with regard to gaseous flow (see Balachandar and Eaton,
2010 and references therein). This study focuses on accumulation
in the present EE simulation in addition to the single-phase
approximation induced by the NEPI and mixture incompressibility.
Here, for the sake of simplicity, we assume that the major differ-
ence in velocity between two phases is the vertical component.
Therefore, we introduce a quantity to measure the deviation from
the equilibrium state for dispersed particles as

dw�cd ¼
wcd �ws;0

ws;0
: ð12Þ

Using the relationship presented in Eq. (12), the mass balance of
the dispersed phase can be written as

@/
@t
þr � uc �wcdð Þ/½ � ¼ 0: ð13Þ

Along with the mixture incompressibility
(r � /ud þ 1� /ð Þuc½ � ¼ 0), Eq. (13) requires a straightforward
manipulation to become

@/
@t
þ ucr/ ¼ 1� /ð Þ @

@z
/wcdð Þ: ð14Þ

The LHS of Eq. (14) describes the movement of the passive sca-
lar that follows the flow motion, while the RHS describes the local
aggregation/segregation. Using the relationship presented in Eqs.
(12), (14) can be further written as

D/
Dt
¼ ws;0 1� /ð Þ @

@z
/þws;0 1� /ð Þ @

@z
/dw�cd

	 

: ð15Þ

In fact, ws;0 1� /ð Þ at the RHS of Eq. (15) is the settling velocity
in the equilibrium state modified by pressure coupling (see Chou
et al., 2013 for detailed derivation). Therefore, the first term at
the RHS of Eq. (15) is equilibrium-state accumulation. The second
term at the RHS of Eq. (15) is local accumulation due to NEPI, and
1� / (appearing in both the first and second terms) is due to mix-
ture incompressibility.

Fig. 5 presents the three-dimensional geometry of rising bub-
bles and the associated distribution of dw�cd in the case of
/0 ¼ 0:0032. It can be seen that the bubble usually has a clearly de-
fined mushroom-shaped geometry associated with a vortex ring.
As a bubble rises in the sediment-containing water column, flow
accelerates locally in the head region, while decelerating (relative
to the upward velocity) within the region of the vortex ring. This
leads to a negative deviation, dw�cd < 0, in the head region and
dw�cd > 0 in the vortex region, as shown in the bottom panel of
Fig. 5. As there must be a sharp increase of / at the interface be-
tween the bubble and the ambient turbid fluid, Eq. (15) shows that
excessive accumulation occurs in the frontal region of rising
bubbles (i.e. @ /dw�cd

	 

=@z > 0). In analogy to bubbles, excessive
accumulation can also occur in the front of falling spikes. Fig. 6 pre-
sents a series of concentration and vorticity snapshots illustrating
the evolution of a falling spike and the corresponding vorticity dis-
tribution. Because wcd is always positive in the head region of the
spike, NEPI produces additional accumulation, subsequently lead-
ing to a higher falling speed than that in the single-phase approx-
imation. Moreover, a comparison between concentration and
vorticity distribution at the later stage in Fig. 6 (s 6 0:81) shows
preferential accumulation along the spike, which leads to an elon-
gated plume structure (see Fig. 6e).

5.3. Energetics

In this section, the evolution of energy budget within the com-
putational domain is examined to elucidate the role of NEPI and
mixture incompressibility in flow energetics. Here, the normalized
potential energy (PE) within the domain is calculated with
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PE ¼ 1
PE0

Z H

�H

Z W

0

Z L

0
qs � q0ð Þgzdxdydz; ð16Þ

where PE0 is the initial potential energy. In the two-phase case, the
normalized vertical kinetic energy, Kz is calculated with

Kz ¼
1

PE0

Z H

�H

Z W

0

Z L

0
qs/w2

d þ q0 1� /ð Þw2
c dxdydz; ð17Þ

while in the single-phase approach, we replace wc with w and wd

with wc þws;0. Normalized horizontal kinetic energy, Kxy, is calcu-
lated with

Kxy¼
1

PE0

Z H

�H

Z W

0

Z L

0
qs/ u2

dþv2
d

	 

þq0 1�/ð Þ u2

c þv2
c

	 

dxdydz ð18Þ
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Fig. 6. Snapshots of normalized sediment concentration (left column) at the middle x
s ¼ 0:075 (top), 0.81 (middle), and 0.86 (bottom) and corresponding distributions of the
in two-phase simulations, and uc ¼ ud ¼ u and vc ¼ vd ¼ v in Eq.
(18) for single-phase simulation. Fig. 7 presents the time evolution
of the release of normalized potential energy, DPE ¼ 1� PE, and
kinetic energy in all cases. Generally, because flow motion is ini-
tially dominated by vertical motion associated with bubbles and
spikes, the vertical kinetic energy, Ky first reaches its peak value be-
fore the peak of the horizontal kinetic energy Kxy. The total kinetic
energy, K, reaches a maximum when s � 1:65, the point at which
mixing nears completion, i.e. concentration profiles in Fig. 2 become
uniform. It can bee seen in Fig. 7a and b that as long as the initial
suspension is not exceedingly dense, an increase in initial concen-
tration increases the amount of potential energy that is transformed
into kinetic energy. The transfer rate (K=DPE) at the time corre-
sponding to the occurrence of the maximum kinetic energy is
0.21 when /0 ¼ 0:0032 and 0.36 when /0 ¼ 0:0128.
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The comparison in Fig. 7a shows the appreciably larger value of
K in the two-phase flow simulation, which is due to NEPI. Because
NEPI is not a function of local concentrations, the resulting
enhancement of vertical motion of the dispersed phase in the
two-phase simulation is significant in dilute suspensions, corre-
sponding to vertical mixing of a greater efficiency. As the initial
concentration increases (/0 ¼ 0:0128), the NEPI effect in the con-
tinuous phase and mixture incompressibility become more impor-
tant. These two effects suppress vertical motion of the mixture
such that, combined with NEPI of the dispersed phase, no signifi-
cant deviation is found between single-phase and two-phase re-
sults, as shown in Fig. 7b. As the initial concentration becomes
increasingly dense (/0 ¼ 0:0512), vertical motion is strongly sup-
pressed by the additional pressure gradient resulting from mixture
incompressibility. As shown in Fig. 7c, this corresponds to a signif-
icant reduction in the time evolution of DPE as well as a lower K.
Fig. 7c also plots data points from the two-phase simulation that
does not take mixture incompressibility into account (indicated
by the subscript 2p�). A comparison of these results with those of
single-phase simulation illustrates that, although time evolutions
of DPE are very similar, a significant reduction of kinetic energy
can be caused by the NEPI effect in the continuous phase in the
dense suspension. Moreover, a comparison with the present two-
phase case (in which mixture compressibility is considered) shows
that the potential energy releases in a significantly slower rate due
to mixture incompressibility. This demonstrates the importance of
mixture incompressibility in bulk mixing behavior in dense
suspensions.

As a quantitative measurement of the transfer rate for dense
suspensions in the present simulations (Fig. 7c), the single-phase
simulation shows a high transfer rate with K=DPE ¼ 0:46, while
the two phase simulation without mixture incompressibility gives
0.39, at the same time that K reaches its maximum value. Taking
mixture incompressibility into account results in a reduction in
the transfer rate to 0.33 and induces a significant reduction in
the release of potential energy, such that the peak in kinetic energy
is only approximately 50% of the value obtained from the single-
phase simulation. This demonstrates that a significant proportion
of the energy dissipation can be attributed to the suppression of
bubble motion by mixture incompressibility.

We further examine flow turbulence. The spectra of the turbu-
lent kinetic energy (TKE) of the middle plan (z=H ¼ 0) in the verti-
cal direction are plotted in Fig. 8 for different /0 in two-phase flow
simulations. The instantaneous TKE data are measured at the same
time that the peak kinetic energy reaches its maximum value, as
presented in Fig. 7. Thus, these can be examined under conditions
of the greatest turbulence intensity in each case. As shown in Fig. 8,
in the case of /0 ¼ 0:0512 and 0.0128, there is a fully developed
turbulence field, corresponding a range of energy spectrum with
slope = �5=3. In the case of /0 ¼ 0:0512, this ranges roughly from
the normalized wave number k (¼ 2pH=k)¼ 60–160 while in the
case of /0 ¼ 0:0128, it ranges from k ¼ 70 to 120. However, in
the case when /0 ¼ 0:0032, no strong evidence is obtained to indi-
cate the development of turbulence, leading to the conclusion that
the flow is fairly laminar. This can be observed in the snapshot of
the concentration field in Fig. 4, which shows larger-scale varia-
tions in concentration without small-scale fluctuations as in the
cases of the denser suspension. Moreover, compared to the dense
cases, the dilute case of Fig. 4a and 4d presents a more pronounced
contrast in concentration contrast of bubbles/spikes to ambient
colors, indicating that the entrainment from the ambient flow is
far lower in the dilute case due to the low intensity of flow
turbulence.

6. Summary and conclusion

This paper presents a two-way coupled EE numerical model to
simulate the suspension of fine particles in liquid. In addition to in-
ter-phase drag, the present numerical model allows for more com-
plete consideration of solid–fluid interactions, namely added mass
and mixture incompressibility. Added mass is taken into account
via the inversion of a matrix obtained from the theoretical
derivation. The mathematical formulation is discretized on a
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finite-volume framework, and mixture incompressibility is en-
sured using a two-phase pressure projection method that solves
the non-Boussinesq pressure field.

The numerical model is then applied to investigate the particle-
driven RT instability and the resulting large-scale vertical convec-
tion of fine sediment (dp ¼ 40 lm) in a simple three-dimensional
setting. The simulation results show that the parameter, a, which
indicates the growth rate of the mixing layer of the RT instability,
ranges from 0:04 to 0:06 in all cases. These are in strong agreement
with those reported in previous studies. It is also found that when
the initial concentration, /0, is dilute, additional momentum com-
ponents of the dispersed phase resulting from NEPI slightly in-
crease the efficiency of vertical mixing. As /0 increases, the NEPI
feedback to the continuous phase and the influence of mixture
incompressibility become increasingly important. In particular,
mixture incompressibility exerts an additional upward pressure
gradient, which suppresses downward motion of high-density
fluid, thereby reducing interfacial mixing associated with the RT
instability. This is significant in the densest case (/0 ¼ 0:0512). In
addition, we present the theoretical basis to describe excessive
accumulation due to NEPI and mixture incompressibility. The spa-
tial distribution of the deviation from the Stokes settling velocity
for the dispersed phase shows that excessive accumulation occurs
in frontal areas of both bubbles and spikes.

The study also analyzes flow energetics. When the initial con-
centration is dilute (e.g. /0 ¼ 0:0032), the time evolutions of the
energy budget shows that the transformation rate from the release
of potential energy to kinetic energy is approximately 0.2, which
increases with an increase in initial concentration (e.g. 0.36 when
/0 ¼ 0:0128). However, this trend only holds under dilute condi-
tions. With a denser initial concentration (such as /0 ¼ 0:0512),
mixture incompressibility results in a considerable reduction of
the release of potential energy and its transformation to kinetic en-
ergy. Moreover, plots of the flow energy spectrum at the middle
plane in the vertical direction at the time corresponding to the
highest kinetic energy for each case show the broadest spectrum
of the homogeneous turbulence regime (slope ¼ �5=3) in the case
of /0 ¼ 0:0512, while in the case of greatest dilution, the flow is not
associated with evident turbulence.

In conclusion, the present three-dimensional numerical model
provides a comprehensive consideration of particle–fluid interac-
tion for problems related to fine suspension. Our results have crit-
ical implications for the single-phase modeling of sediment
suspension problems. Despite the fact that the single-phase
approximation remains an appealing approach without the
requirement of using the the infinitesimal computational time step
(< sp), the underlying assumption prevents it from capturing NEPI,
which is accessible only via the two-phase method. However, mix-
ture incompressibility can be included by modifying the source
term to include the sediment flux to solve the pressure field in
the incompressible flow solver. According to the findings of the
present study, this provides far greater accuracy, particularly when
concentrations are dense.
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