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[1] The forcing effect of channel width variations on free bars is investigated in this study
using a two‐dimensional depth‐averaged morphodynamic model. The novel feature of
the model is the incorporation of a characteristic dissipative Galerkin (CDG) upwinding
scheme in the bed evolution module. A correction for the secondary flows induced by
streamline curvature is also included, allowing for simulations of bar growth and migration
in channels with width variations beyond the small‐amplitude regimes. The model is
tested against a variety of experimental data ranging from purely forced and free bars to
coexisting bed forms in the variable‐width channel. The CDG scheme effectively dissipates
local bed oscillations, thus sustains numerical stabilities. The results show that the global
effect of width variations on bar height is invariably suppressive. Such effect increases
with the dimensionless amplitude AC and wave number lC of width variations. For small AC,
lC has little effects on bar height; for AC beyond small amplitudes, however, the suppressing
effect depends on both AC and lC. The suppressing effect on bar length increases also
with both AC and lC, but is much weaker than that on bar height. The global effect of width
variations on bar celerity can be suppressive or enhancive, depending on the combination
ofAC and lC. For smaller lC, the effect on bar celerity is enhancive; for larger lC, bar celerity
tends to increase at small AC but decreases for AC beyond small amplitudes. We present
herein an unprecedented data set verifying the theoretical prediction on celerity enhancement.
Full suppression of bar growth above the theoretically predicted threshold AC was not
observed, regardless of the adopted amplitude of initial bed perturbation A. The global
effects of width variations on free bars can be quantified using a forcing factor FC that
integrates the effects of AC and lC. The suppressing effects on bar height and length are both
proportional to FC

2.16; the global effect on bar celerity is, however, a parabolic function of FC.
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1. Introduction

[2] Bars are large‐scale bed forms observed in rivers, with
their heights and lengths typically scaled with the flow depth
and channel width, respectively. Two classes of bars, namely,
free and forced bars are distinguished according to their
origins and morphological features [Seminara and Tubino,
1989]. Free bars arise from an inherent instability of
erodible beds subject to turbulent flows [Callander, 1969;
Colombini et al., 1987; Tubino et al., 1999], where the growth
of bed perturbations leads to the spontaneous development of
migrating alternate bars in straight channels. Free bars are
characterized by the alternating sequence of riffles and pools

separated by sharp diagonal fronts. The wavelengths of
alternate bars are ∼8 to 10 channel widths, and the maximum
bar heights are ∼1 to 2 flow depths [Whiting and Dietrich,
1993; Garcia and Nino, 1993; Lanzoni, 2000a]. Once fully
developed, the alternate bars maintain their morphology while
migrating downstream, as revealed by the steady translation
of bar fronts.
[3] Forced bars, on the other hand, are stationary bed

deformations arising from the forcing effects of spatial non-
uniformity, such as channel curvature or width variations. A
typical example of curvature‐induced bed forms is the point
bars established at the inner bends of a meandering channel
[Ikeda and Parker, 1989], where the alternating bar config-
uration arises as a result of the asymmetric forcing associated
with the periodic change of sign of channel curvature. In
contrast, central bars and two‐side bars are symmetric bed
deformations developed at the wide sections of a variable‐
width channel [Bittner, 1994; Repetto and Tubino, 2001;Wu
and Yeh, 2005], where the transverse structure of the forced
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bed forms arises as a consequence of the symmetric forcing
induced by streamline convergence‐divergence associated
with the periodic width variations. The irregular bed topo-
graphies observed in natural streams may consist of a deci-
pherable mixture of free and forced bars [Furbish et al.,
1998].
[4] It has been observed in the fields and laboratory flumes

that when the forcing effects are sufficiently strong, the
migrating alternate bars are suppressed in favor of the
development of forced bed topographies. Coexistence of free
and forced bars in weakly curved channels and transition
from migrating alternate bars to stationary point bars in
developing meanders have been extensively investigated
through flume studies [Kinoshita and Miwa, 1974; Gottlieb,
1976; Fujita and Muramoto, 1982, 1985]. Kinoshita and
Miwa [1974] first observed the existence of a threshold
value of channel curvature above which bar migration is
suppressed, which was later analytically interpreted by
Tubino and Seminara [1990]. The experimental results of
Garcia and Nino [1993] indicated that the channel curvature
in general tends to damp the height of alternate bars and slow
down their migration. Further experiments performed by
Whiting and Dietrich [1993] revealed that the migrating
alternate bars would temporarily stall when in phase with the
point bars, leading to a reduced bar celerity compared to that
observed in a straight channel, which confirms the numerical
predictionmade by Shimizu and Itakura [1989]. These results
may have practical implications. An example is that stream
restoration work aimed at stabilizing the streambed can
specify a slightly sinuous alignment to promote suppression
of migrating bed features [Seminara, 2006].
[5] In contrast to the much studied phenomenon of coex-

isting free and forced bed forms in the meandering channels,
the coexistence of free and forced bars in the variable‐width
channels and their nonlinear interactions received attention
only recently [Bittner, 1994; Repetto and Tubino, 1999;
Repetto, 2000; Wu and Yeh, 2005]. Repetto and Tubino
[1999] presented an analysis based on a weakly nonlinear
approach (in terms of the forcing effect) and a linear stability
theory (in terms of the bar growth) to ascertain the effect of
periodic width variations on the development process of free
bars. Their analysis relied on the assumption that the
dimensionless amplitudes of width perturbation (AC) and bed
perturbation (A) are both small, with the latter being much
smaller than the former, i.e., A � AC � 1 [Repetto, 2000].
The output results of their analysis suggested that: (1) the
effects of width variations on free bars are invariably sup-
pressing; (2) the damping effects on free bars depend pri-
marily on the amplitude of width variations, but are only
slightly dependent upon the wave number of width variations;
(3) a threshold amplitude of width variations exists, above
which free bars are fully suppressed; (4) width variations in
general slow down the migration of alternate bars, however,
very slow spatial variations of channel width (i.e., very small
wave numbers) may speed up bar propagation. The experi-
mental results of Repetto and Tubino [1999] revealed that the
leading Fourier components of bed topography obtained in
the variable‐width channels exhibit a suppressed alternate bar
mode but enhanced longitudinal and transverse modes of
forced bed topography as compared to those measured in the
straight channels. Experimental studies performed with
increasing amplitudes of width variations further confirmed

the predicted full suppression of alternate bars above the
threshold conditions [Bittner, 1994; Bolla Pittaluga et al.,
2001; Repetto et al., 2002]. It was also demonstrated that,
due to the interactions between free and forced bed responses,
the heights and wavelengths of alternate bars observed in the
variable‐width channels are consistently smaller than those
observed in their straight counterparts [Lanzoni and Tubino,
2000].
[6] Despite the above mentioned experimental studies that

have been conducted to verify the theoretical predictions,
several unresolved questions remain to be asked. (1) Do the
variations of channel width invariably suppress free bars?
Specifically, could very small wave numbers of width var-
iations speed up bar migration as predicted by the linear
stability theory? This has never been confirmed experimen-
tally or numerically. (2) Is the effect of width variations on
free bars invariably less dependent on the wave number of
width variations than on the amplitude of width variations?
(3) What would happen if the small‐amplitude assumptions
for the width variations and bed perturbation are violated?
Specifically, would the growth of free bars be fully sup-
pressed by the amplitude of width variations that is above the
predicted threshold if the bed perturbation is beyond the
small‐amplitude regime? (4) An extended but probably more
important question to ask: Would it be possible to combine
the amplitude and wave number of width perturbations as a
single, integrated factor that can be used to quantify the
overall forcing effect of width variations on free bars?
[7] In this paper we aim to answer these questions using a

numerical simulation approach. The numerical model to be
used for the task should be able to handle the case of free bar
migration in channels with periodic width variations, where
nonlinear interactions take place between the free and forced
bed responses. To this aim, we develop a finite element (FE)
model suitable for the convection‐dominated morpho-
dynamic system, based on the characteristic dissipative
Galerkin (CDG) spatial discretization of the hydrodynamic
equations and sediment continuity equation, the latter is a
novel contribution of this study. The proposedmodel allows a
fully nonlinear study of the interactions between free and
forced bed responses beyond the small‐perturbation regimes.
The key features of numerical modeling essential for the
present study are summarized below.

2. Numerical Modeling

[8] Before we start to formulate our numerical model, a
brief review of the available models most relevant to the
present study is helpful. For alluvial channels with non‐
erodible banks, a morphodynamic model solves the hydro-
dynamic equations and sediment continuity equation to
simulate the evolution of bed topography caused by erosion
and deposition of sediment. The hydrodynamic equations,
which include continuity and momentum equations of water
flow, are a system of hyperbolic partial differential equations
(PDEs), and the sediment continuity (or Exner) equation is
also a hyperbolic PDE. The hyperbolic PDE physically
describes two mechanisms of transport, i.e., convection and
diffusion [Jansen et al., 1979], also referred to as translation
and dispersion [Lisle et al., 2001]. In some cases, one of the
mechanisms may dominate over the other. For example,
the Exner equation may be reduced to a parabolic PDE, or
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diffusion equation, to model bed aggradation and degrada-
tion induced by the change of sediment supply [Gill, 1987].
In contrast, for channels with migrating bed forms, such as
free alternate bars whose convective nature has been dem-
onstrated analytically [Federici and Seminara, 2003], the
hyperbolic version of the Exner equation has to be used.
[9] Computationally, the hydrodynamic and Exner equa-

tions may be solved using a coupled or decoupled approach.
In a fully coupled approach the hydrodynamic and Exner
equations are solved simultaneously, whereas in a decoupled
(or semi‐coupled) approach the Exner equation is solved after
the hydrodynamic equations. For most river applications
where the morphodynamic time scale is much greater than the
hydraulic time scale, the flowfield may well be approximated
as quasi‐steady [de Vries, 1965], thus the use of a decoupled
approach is appropriate where the specified bed topography
remains fixed during each time step of hydraulic computa-
tion and then with the solved flowfield the bed topography
is updated via the Exner equation. Although the coupled
three‐dimensional (3D)morphodynamicmodeling is recently
made possible due to the advances in computational power
[e.g., Chou and Fringer, 2010], the extremely high cost of
the coupled 3D computation makes the decoupled two‐
dimensional (2D) model a preferred choice for most practical
applications.
[10] The finite element method (FEM) has been an attrac-

tive tool for morphodynamic modeling, primarily due to its
flexibility to adapt to complicated planform geometries and
natural boundary conditions. The conventional Galerkin
FEM (GFEM) is a centered scheme appropriate for the dif-
fusive problems. Applying the GFEM to the convection‐
dominated systems often introduces spurious oscillations in
the vicinity of discontinuities leading to severe numerical
instabilities [Donea and Huerta, 2003]. The river morphol-
ogy model River2D‐MOR recently presented by Vasquez
et al. [2007] was built by semi‐coupling the Exner equation
with the existing depth‐averaged 2D FE hydrodynamic
model River2D [Steffler and Blackburn, 2002]. In the Riv-
er2D model a characteristic dissipative Galerkin (CDG)
scheme [Hicks and Steffler, 1992] is employed to solve the
hyperbolic system of hydrodynamic equations where the
convective transport dominates. The CDG scheme is a
streamline upwind Petrov‐Galerkin (SUPG) scheme [Brooks
and Hughes, 1982] in which the upwind weighted test
functions are used to introduce selective dissipation of spu-
rious oscillations based on the characteristic velocities of both
progressive and regressive disturbances. Hicks and Steffler
[1995] compared three FE schemes specifically designed
for the hyperbolic systems, and concluded that the CDG
scheme outperforms the others because of the balanced
treatment of both disturbance components and little sensi-
tivity to parameter variations. However, to date the CDG
scheme has only been applied in the discretization of
hydrodynamic equations but has never been applied in the
bed evolution module for discretization of the Exner equa-
tion, thus the River2D‐MOR model is not suitable for the
convective problems such as migrating bed forms. Moreover,
when applied to simulate the formation of forced bars in the
variable‐width channels [Vasquez, 2005; Vasquez et al.,
2007], some stability problems caused by the acute local
changes in bed elevation at the corners along sidewalls pre-
vented the application of the River2D‐MOR model to its full

extent. Lately a simplest first‐order upwinding scheme has
been incorporated into the bed evolution module of the
River2D‐MOR model [Kwan, 2009], such a scheme would,
however, introduce severe numerical diffusion into the
solution where large gradients exist [Patankar, 1980].
[11] To simulate the growth of free bars in straight chan-

nels, a number of numerical studies have been conducted. For
example, Nelson and Smith [1989] and Nelson [1990] pre-
sented a 2D model combining the fully nonlinear flow
equations, sediment transport and bed evolution calculations.
Their results indicated that the initial instability of alternate
bars is a simple topographic steering response, while the
eventual finite‐amplitude stability of free bars results from a
balance between topographic steering, gravitational effect
induced by bar slopes, and secondary flows associated with
streamline curvature. Federici and Seminara [2003] built a
2D finite difference (FD) model by semi‐coupling the Exner
equation with the shallow water equations. Their simulation
results demonstrated that (1) starting from either a randomly
distributed or localized bed perturbation, the alternate bar
trains would grow and migrate downstream leaving the
source area undisturbed; (2) the persistent pattern of alternate
bars observed in the laboratory flumes arises from some
persistent initial perturbations; (3) the nonlinear development
of such perturbations leads to an equilibrium bar pattern with
its amplitude independent of the amplitude of the initial
perturbation whereas the distance needed to achieve equi-
librium reduces with increasing amplitude of initial pertur-
bation. Bernini et al. [2006] investigated the gravitational
effect of transverse bed slope on the equilibrium bar char-
acteristics using a 2D FD model semi‐coupling the Exner
equation with the shallow water equations. Defina [2003]
developed a decoupled 2D FE model to simulate the
growth of free bars in straight channels and tested against the
experimental data from Lanzoni [2000a]. Using four types of
initial bed disturbance to trigger bar formation,Defina [2003]
found that the initial stages of development and the equilib-
rium bar characteristics are strongly affected by the way bars
are generated. Nevertheless, the relations between equilib-
rium bar height, bar length and celerity collapse on single
curves regardless of the type of initial bed disturbance. The
implication of these results for the current study is that a
consistent way of initial bed disturbance should be employed
to trigger bar formation, such that the equilibrium bar char-
acteristics can be compared on a common ground.
[12] We use in this study the FE method because of its

geometric flexibilities better suited for complex planforms.
Currently, the available FE morphodynamic models lack a
robust upwinding scheme for discretization of the Exner
equation. As a result, these FE models would end up with
numerical instabilities or degraded flow/bed variables when
applied to the convection‐dominated problems [Oden and
Carey, 1983]. Hence, there is a pressing need for a morpho-
dynamic model that is applicable to simulations of bar growth
and migration in variable‐width channels.
[13] The morphodynamic model presented in this paper is

based on the CDG discretization of the hydrodynamic and
Exner equations. The model is applicable to the hyperbolic
systems where convective transport of flow and bed form
prevails. The model integrates a hydrodynamic module and
a bed evolution module in a semi‐coupled fashion. The
hydrodynamic module is constructed following closely the
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CDG‐based depth‐averaged 2D FE model developed by
Steffler [1997], while the bed evolution module is a novel
contribution because the CDG scheme has never been
implemented on the Exner equation. Details of model for-
mulation are described in Appendix A.

3. Model Test

[14] The proposed CDG‐based morphodynamic model is
tested in this section against a variety of experimental data.
The first is the purely forced bars observed in the variable‐
width channels. Two data sets are used: one is the two‐side
bars from Bittner [1994]; the other is the central bars fromWu
and Yeh [2005]. The second is the migrating alternate bars in
the constant‐width straight channel. A data set from Lanzoni
[2000a] is used. The third is coexisting free and forced bars in
the variable‐width channel from Wu and Yeh [2005]. The
details of the experimental conditions, model setting, and
results comparison are described below.

3.1. Forced Bars in Variable‐Width Channels

3.1.1. Two‐Side Bars
[15] The experimental data from run C1–11 of Bittner

[1994] are used to verify the formation of two‐side bars in
the variable‐width channel. The experiment was performed
in a channel with sinusoidal width variations, which are
described by

B xð Þ ¼ B0 1þ AC sin 2�x=LCð Þ½ � ¼ B0 1þ AC sin �Cx=B0ð Þ½ � ð1Þ

where B(x) = channel half‐width at x; B0 = mean half‐width
of the channel; LC = wavelength of width variation; AC =
dimensionless amplitude of width variation; lC = dimen-
sionless wave number of width variation = 2pB0 /LC. The
parameters of the channel used in run C1–11 are B0 = 0.2 m,
AC = 0.375, LC = 1.6 m, and lC = 0.785. The channel consists
of eight sinusoidal cycles; three of them are shown in
Figure 1. The unit discharge qin = 7.3 × 10−3 m2/s, channel
slope S0 = 0.004, bed material is well‐sorted sand with ds =
0.53 mm. The experiment was run for >6 h; the final equi-
librium bed topography and flow depth were measured in

the mid four cycles. The mean flow depth h0 = 2.2 cm,
which gives a Shields stress for the reference uniform flow
�0 = 0.102.
[16] The computational domain includes a total of eight

sinusoidal cycles, with the upstream and downstream ends
extended with constant‐width (= 2B0) fixed‐bed reaches.
Uniform flows are specified in the extended reaches, with the
inflow bed load transport rate qb,in = 5.07 × 10−6 m2/s eval-
uated from the given �0. These extended fixed‐bed reaches
ensure that an equilibrium bed configuration eventually
develops in the variable‐width reach [Defina, 2003]. The
numerical simulation was run for a sufficient time to ensure
that an equilibrium stage was reached. Also shown in Figure 1
is the structured triangular FE mesh in one of the cycles.
A total of 3,200 elements with 1,768 nodes are included in
the entire computational domain, with mean element sizes
Dx = 0.08 m and Dy = 0.045 m.
[17] The simulated equilibrium bed topography is shown in

Figure 2, where the measured bed topography and the linear
solution from Wu and Yeh [2005] are also shown for a
comparison. The numerical result is generally in satisfactory
agreement with the measured data. The observed longitudinal
patterns of deposition at the wide sections and scour at the
narrow ones, and formation of two‐side bars at the wide
sections are well captured by the numerical model. To further
demonstrate this, the transverse profiles of equilibrium bed
deformation at the four cross sections of a sinusoidal cycle
(see Figure 1) are shown in Figure 3, along with the cycle‐
averaged data and the linear solution. The transverse bed
profiles are, in general, well reproduced by the numerical
model. At the wide section (2/4 cycle), the numerical result
slightly underestimates deposition at the bar crests, while the
linear solution tends to overestimate deposition particularly at
the center. At the narrow section (4/4 cycle) and transitional
sections (1/4 and 3/4 cycles), both the numerical result and
linear solution coincide reasonably well with the observed

Figure 1. Variable‐width channel used in run C1–11
[Bittner, 1994]. The channel consists of eight sinusoidal
cycles; three are shown here with structured triangular FE
mesh depicted in one of them. Mean channel width 2B0 =
0.4 m; amplitude and wavelength of width variations ACB0 =
0.075 m and LC = 1.6 m; mean element sizesDx = 0.08 m and
Dy = 0.045 m. Labeled with 1/4∼4/4 are the four cross sec-
tions of a sinusoidal cycle whose transverse profiles of
equilibrium bed deformation and flow depth are shown in
Figures 3 and 4.

Figure 2. Equilibrium bed deformation of run C1–11:
(a) Observed two‐side bars [Bittner, 1994]; (b) numerical
result (this study); (c) linear solution [Wu and Yeh, 2005].

WU ET AL.: EFFECT OF WIDTH VARIATIONS ON FREE BARS F03023F03023

4 of 20



bed profiles. Because of the correction for the secondary
flows induced by streamline curvature in the direction of bed
shear stress that is incorporated in the numerical model and
linear solution [Wu and Yeh, 2005], they both provide a sat-
isfactory approximation to the observed bed topography.
Such correction is particularly important when the small‐
amplitude assumption for width variations is relaxed. In this
case the numerical result outperforms the linear solution
probably because the value of AC (= 0.375) is way beyond the
small‐amplitude assumption upon which the linear solution
is based.
[18] To further test the hydrodynamic module, the trans-

verse distributions of equilibrium flow depth at the four cross
sections of a sinusoidal cycle (Figure 1) are shown in
Figure 4, along with the cycle‐averaged data and the linear
solution. Generally, the numerical result correctly reflects the
variations of flow depth. Longitudinally, the smaller depth at
the wide section (2/4 cycle) and greater depth at the narrow
section (4/4 cycle) are well captured. Transversely, the con-
cave and convex profiles are satisfactorily reproduced.
However, at the wide section, both the numerical and linear
solutions tend to underestimate flow depth near the center;
while at the narrow section, both solutions underestimate
flow depth near the walls. This result is possibly related to
the neglecting of secondary circulations due to topographic
steering in the hydrodynamic equations.
[19] It should be noted here that the stability problem

encountered by the previous investigators [Vasquez, 2005;
Vasquez et al., 2007] did not arise during our numerical
simulations. It has been reported that the acute local bed
perturbations are induced by the extreme nodal velocities at
the corners where rapid changes in flow direction take place.
The extreme nodal velocities would not affect the stability of

the hydrodynamic module but have a strong influence on the
bed evolution module because such local bed perturbations
tend to grow and propagate, and eventually turn the model
unstable. By incorporating the CDG scheme in the bed evo-
lution module, we were able to dissipate such perturbations
and sustain the stability of the morphodynamic simulation.
3.1.2. Central Bars
[20] The experimental data from run S‐6 of Wu and Yeh

[2005] are used to verify the formation of central bars in the
channel with a much smaller value of lC (= 0.3). The channel,
10 m long, consists of three sinusoidal cycles with AC =
0.156, LC = 3.35 m, and B0 = 0.16 m, and is given the unit
discharge qin = 0.02 m2/s, channel slope S0 = 0.003, and well‐
sorted bed material with ds = 1.58 mm. The experiment was
run for >8 h; the final equilibrium bed topography in the
mid two cycles wasmeasured using a laser scanner. Themean
flow depth h0 = 4.49 cm yields a value of �0 = 0.052 for
the reference uniform flow. The computational domain is
lengthened to include a total of six sinusoidal cycles; the
upstream and downstream ends are extended with the
constant‐width fixed‐bed reaches, where uniform flows are
imposed, with the bed load transport rate qb,in evaluated from
the given value of �0. A total of 4,200 triangular elements and
2,457 nodes are included in the entire domain, with mean
element sizes Dx = 0.067 m, Dy = 0.053 m.
[21] The computed equilibrium bed topography along with

the measured data and linear solution from Wu and Yeh
[2005] are shown in Figure 5, where satisfactory agreement
between the computed and measured results is demonstrated.
The longitudinal pattern with deposition at the wide sections
and scour at the narrow ones, and formation of central bars at
the wide sections are correctly reproduced. The transverse
profiles of bed deformation at the wide and narrow sections

Figure 3. Transverse profiles of equilibrium bed deformation at four cross sections (see Figure 1) of a
sinusoidal cycle (run C1–11). The cycle‐averaged data [Bittner, 1994], numerical result (this study), and
linear solution [Wu and Yeh, 2005] are shown for a comparison.
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are shown in Figure 6, alongwith the cycle‐averaged data and
the linear solution, where similar results are obtained with the
numerical model and the linear solution. However, it is
revealed that at the wide section, the near‐wall deposition is
over predicted, whereas at the narrow section, the near‐wall
scour is overestimated. The discrepancies in the near‐wall
bed topography are probably attributed to the fact that the 3D
wall boundary layer effects are not accounted for in the 2D
depth‐averaged model, and also due to the local velocity
distortion caused by the relaxed no‐slip condition at the walls
that becomes particularly significant at small values of lC, as
previously elucidated by Wu and Yeh [2005]. Other simpli-
fications made in this study, such as neglecting the effects of
small bed forms, sloping bed, inertial lag, and topographic
steering, may also contribute to the discrepancy between the
computed and observed near‐wall bed topographies.

3.2. Free Bars in Straight Channel

[22] Migration of free alternate bars is a convective prop-
agation of bed forms. As noted earlier, a morphodynamic
model based on the conventional Galerkin scheme is
numerically unstable when applied to such a problem. To
address this instability issue, previous investigators [Defina,
2003; Vasquez, 2005] employed degraded spatial resolutions
for the bed load flux and bed deformation as an alternative
solution strategy. The proposed CDG‐based morphodynamic
model is tested in this section against the experimental data
from Lanzoni [2000a] to examine whether the growth of
free bars can be reproduced without degrading the resolution
of the bed evolution module.
[23] The test performed here follows the numerical

experiments of Defina [2003] simulating the observed pro-
cesses of bar growth in a straight channel [Lanzoni, 2000a].

The channel is 55 m long and 1.5 m wide; the bed material is
well‐sorted sand with ds = 0.48 mm. The experimental con-
ditions of run P1505 are adopted, which include the unit
discharge qin = 0.02 m2/s, channel slope S0 = 0.0045, normal
depth h0 = 0.044 m, and bed load transport rate qb,in = 1.13 ×
10−5 m2/s. A computational domain 100 m in length, much
longer than the actual length of the channel, is used allowing

Figure 5. Equilibrium bed deformation of run S‐6:
(a) Observed central bars [Wu and Yeh, 2005]; (b) numerical
result (this study); (c) linear solution [Wu and Yeh, 2005].

Figure 4. Transverse distributions of equilibrium flow depth at four cross sections (see Figure 1) of a
sinusoidal cycle (run C1–11). The cycle‐averaged data [Bittner, 1994], numerical result (this study), and
linear solution [Wu and Yeh, 2005] are shown for a comparison.
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for the sufficient growth of free bars before they leave the
domain [Defina, 2003]. The fixed‐bed reaches extended in
the upstream and downstream ends are imposed with uniform
flows, leading to an equilibrium bed load transport. The
computational domain comprises a total of 7,680 triangular
elements and 4,329 nodes, with mean sizesDx = 0.25 m and
Dy = 0.15 m.
[24] The channel is initially flat bedded. Following the

approach used by previous investigators, a localized bump is
introduced at the upstream end triggering the formation of
free bars [Defina, 2003; Federici and Seminara, 2003;
Bernini et al., 2006]. This bed perturbation has a sinusoidal
structure in both the longitudinal and transverse directions,
which is similar to the localized bed disturbance adopted by
Federici and Seminara [2003] and is expressed by

�zb x; yð Þ ¼ Ab sin �x=Lbð Þ sin ��y=2B0ð Þ ð2Þ

where dzb = bed perturbation; Ab = amplitude of bed pertur-
bation; Lb = longitudinal length of bed perturbation. The
localized bump stretches from x = 0 to Lb and y = −B0 to B0.
The adopted values of Ab = 4 mm and Lb = 3.5 m are con-
sistent with those used by Defina [2003], who found that a
localized initial bump is unable to trigger a persisting train
of bars as observed in the flume experiments. The persisting
train of bars may arise from the spatiotemporal growth
of some persistent, random perturbations [Defina, 2003;
Federici and Seminara, 2003]. It should be noted here that
because the real perturbations are not known, any given
distribution of initial disturbances is subjected to a strong
degree of arbitrariness. The single bump adopted here thus
only serves as an agent for triggering the formation of alter-
nate bars.
[25] The simulated evolution of bed topography following

the introduction of an initial bump is depicted in Figure 7,
where a small‐amplitude bar takes form immediately down-
stream of the initial bump (1 h), followed by two alternate
bars generated downstream. These newly formed bars, along
with the initial bump, keep migrating while growing in their
sizes, meanwhile trigger the formation of new bars further
downstream (2–3 h). By the end of 4 h, the well‐developed
train of bars reaches the downstream end. As the bars grow
they lengthen and decelerate, and the lee faces become
steeper resulting in the signature diagonal fronts (4–5 h).
Following the first 2 h of rapid development, the growth of

free bars gradually slows down. At the end of 7 h, several
bars immediately downstream of the initial bump reach a
quasi‐equilibrium state while some new, further downstream
bars have moved out of the domain. After the passage of the
train of bars, the source area is left undisturbed, demonstrat-
ing fully the convective nature of free bars [Defina, 2003;
Federici and Seminara, 2003; Bernini et al., 2006]. The
processes of bar growth demonstrated by our simulation
results are faster than those reported by Defina [2003], but
are more consistent with the observed results [Lanzoni,
2000a], which is probably attributable to the adopted initial
bump that is more effective in triggering bar formation.
[26] The longitudinal profile of local bar height, defined

as the difference in extreme elevations between the right‐
and left‐half cross section, for the two bars located within x =
70 ∼ 90 m (7 h) is compared to the observed result from
Lanzoni [2000a], shown in Figure 8, where satisfactory
agreement between the computed and observed results is
demonstrated. The maximum bar height obtained from the
simulation result is ∼6 cm, close to the reported value of
7 cm. The simulated result of bar wavelength is ∼11 m, also
close to the reported value of 10 m. The computed result
of bar celerity is ∼4 m/h, greater than the reported value of
2.8 m/h but much more realistic than the value of 8.5 m/h
predicted by the linear theory [Lanzoni, 2000a].

Figure 6. Transverse profiles of equilibrium bed deformation at wide and narrow sections of a sinusoidal
cycle (run S‐6). The cycle‐averaged data [Wu and Yeh, 2005], numerical result (this study), and linear
solution [Wu and Yeh, 2005] are shown for a comparison.

Figure 7. Simulation of bar evolution (bed deformation)
following the introduction of an initial bed disturbance. As
the alternate bars grow they lengthen and decelerate; the lee
faces become steeper, leading to the signature diagonal fronts.
After the passage of the train of bars, the source area is left
undisturbed.
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[27] So far we have tested the CDG‐based morphodynamic
model against the experimental data of purely forced bars
developed in variable‐width channels and growth of free bars
in the straight channel. These results reveal that the proposed
CDG‐based model well captures the longitudinal and trans-
verse topographic features associated with the complex
planform. The proposed model also reproduces successfully
the migrating bed forms while securing the numerical sta-
bility and spatial resolution. In the following section we
further test the CDG‐based model against a mixed case where
forced and free bed forms coexist in a variable‐width channel.

3.3. Coexisting Forced and Free Bars in Variable‐
Width Channel

[28] To be effectively used as a tool for investigating
the nonlinear interactions of forced and free bed forms, the
CDG‐based model is further tested against the experimental
data from run F‐2 ofWu and Yeh [2005], where steady central
bars and quasi‐stationary alternate bars coexisted in a
variable‐width channel. The channel and sediment used in
run F‐2 and the FE mesh used for the computation are the
same as those earlier used for run S‐6 (see section 3.1.2).
The experimental conditions include qin = 0.0137 m2/s,
S0 = 0.005, h0 = 3.13 cm, and qb,in = 3.35 × 10−6 m2/s.
The equilibrium bed topography observed at the end of
9 h is shown in Figure 9a, where a distorted central bar is
demonstrated.
[29] To simulate coexisting forced and free bars, a two‐

stage procedure is adopted. At the first stage, the model
simulation is run for a sufficient time without introducing any
disturbance such that an equilibrium forced bed form is
developed (Figure 9c). At the second stage an upstream bed
perturbation, described by (2) with Ab = 4mm and Lb = 3.5 m,
is introduced triggering the formation of alternate bars in
the presence of forced bars. As mentioned earlier, because
the real distribution of bed perturbations is not known, the
localized bump used here is solely aimed to obtain the best
possible result (Figure 9b) that is in agreement with the
observed bed topography (Figure 9a). Following Whiting
and Dietrich [1993], we subtract the forced component
(Figure 9c) from the mixed bed forms (Figure 9b) to extract
the free component, as shown in Figure 9d, where the alter-
nate bars developed in the variable‐width channel have a
maximum amplitude of ∼0.2 cm, smaller than the coexisting
central bars whose amplitude is about twice that magnitude.
[30] To further compare the numerical and experimental

results, the transverse profiles of bed deformation at the four

cross sections of a sinusoidal cycle are shown in Figure 10,
where the asymmetric profiles of scour and deposition
respectively at the narrow section (1/4 cycle) and the wide
section (3/4 cycle) are well captured by the numerical model,
whereas at the transitional sections the scour (2/4 cycle) and
deposition (4/4 cycle) are slightly underestimated. Overall,
the CDG‐based model reproduces with reasonable success
the coexisting forced and free bars in the variable‐width
channel, thus confirming the effectiveness of the proposed
model.

4. Effects of Width Variations on Free Bars

4.1. Numerical Experiments

[31] To study the effects of width variations on free bars, a
series of numerical experiments are conducted using differ-
ent combinations of channel parameters. The equilibrium
characteristics of bars (i.e., bar height, length, and celerity)
developed in the variable‐width channels are compared to
those developed in the reference straight channel, whose
width 2B0 is the mean width of the variable‐width channel.
We use the parameter values adopted by Bernini et al. [2006]

Figure 8. Longitudinal profile of local bar height (defined
as the difference in extreme elevation between the right‐
and left‐half cross section). Two bars located within x =
70 m ∼ 90 m (7 h in Figure 7) are compared to the experi-
mental data [Lanzoni, 2000a].

Figure 9. Equilibrium bed deformation in run F‐2:
(a) Observed distorted central bar [Wu and Yeh, 2005];
numerical results (b) coexisting forced and free bars, (c) forced
bar and (d) free bar components.
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in their Case 3 as our base conditions for the reference uni-
form flow, which include the aspect ratio b = B0 /h0 = 15 (B0 =
0.15 m, h0 = 0.01 m), Froude number Fr = 0.8, Shields stress
�0 = 0.07, unit discharge qin = 2.5 × 10−3 m2/s, channel slope
S0 = 0.005, and sediment size ds = 0.43 mm. These values are
adopted here mainly because they allow for fast development
of alternate bars, reducing the time needed to reach the
equilibrium state. The simulation time of each experiment is
16 h and the length of the channel is 30 m, allowing for four
alternate bars fully developed. The channel width is perturbed
with different combinations of amplitude and wavelength. A
total of 16 combinations are used, composed of four ampli-
tudes AC = 0.1, 0.2, 0.3, and 0.4 (referred to as A01, A02,
A03, and A04 series) and four wave numbers lC = 0.2, 0.4,
0.6, and 0.8 (referred to asW02,W04,W06, andW08 series).
The values of AC used in our numerical experiments exceed
the limit of small‐amplitude assumption, and the values of lC
used here are beyond the range investigated in earlier studies
[Repetto and Tubino, 1999; Repetto, 2000], thus allowing for
a study that covers a broader range of forcing effect. Also, for
the parameter values used here, the threshold values of AC

corresponding to the full suppression of bar growth are
mostly <0.2, according to the linear stability theory [Repetto
and Tubino, 1999; Repetto, 2000]. As such, more than half of
the AC values used in our numerical experiments exceed the
predicted thresholds.
[32] The unit bed load transport rate qb,in = 1.0 × 10−6 m2/s

is evaluated with the given value of �0 in the reference uni-
form flow imposed on the extended reach. An initial bed
perturbation is introduced in the upstream extended reach
triggering the formation of alternate bars. This bed pertur-
bation is a localized single bump described by (2) with Ab =
3 mm and Lb = 1.6 m, which result in a value of the dimen-
sionless amplitude of bed perturbation A (= Ab /h0 = 0.3)

beyond the small‐amplitude regime. This amplitude of bed
perturbation, according to Defina [2003] and Bernini et al.
[2006], does not affect the equilibrium bar characteristics
but would significantly reduce the time needed to reach an
equilibrium state. Prior to the introduction of bed perturba-
tion, the numerical simulation is run for a sufficient time such
that the forced bed topography is fully developed in the
variable‐width channel, as shown in Figure 11, where the
equilibrium forced bed forms developed in the 16 variable‐
width channels studied here are shown. Figure 11 reveals that
the bar type (central or two‐side bars) is determined by the
dimensionless wave number lC, whereas the bar amplitude is
governed by the dimensionless amplitude AC. Central bars
develop inW02 series (lC = 0.2), while side bars are observed
in W04 to W08 series (lC = 0.4 to 0.8). Moreover, as AC

increases from 0.1 to 0.4 (A01 to A04 series), the corre-
sponding amplitude of forced bars increases accordingly.
The distinct forcing effects associated with the wave num-
ber and amplitude of periodic width variations are clearly
demonstrated.
[33] Following the introduction of an initial bed distur-

bance, a train of free bars is developed. These alternate bars
superimpose on the existing forced bed forms, resulting in a
mixture of bed topographies. The alternate bars subsequently
migrate downstream, leaving the forced bed forms undis-
turbed. An animation is available in the auxiliary material.1

Shown in Figure 12b are the coexisting free and forced bed
forms 8 h after the formation of free bars (A02 series). Sub-
tracting the forced bed forms (Figure 11b) from themixed bed
forms (Figure 12b) gives the free bar components, shown in
Figure 12c, where the alternate bars developed in variable‐

Figure 10. Transverse profiles of equilibrium bed deformation at four cross sections of a sinusoidal cycle
(run F‐2). The experimental data [Wu and Yeh, 2005] and numerical result are shown for a comparison.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010JF001941.
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width channels exhibit different degrees of deviation in bar
features from the corresponding free bars developed in the
reference straight channel (Figure 12a). Such deviations arise
from different degrees of forcing effect exerted on the free
bars. In subsequent analyses, we will use the equilibrium bar

characteristics developed in the straight channel as the base
values, and quantify the forcing effect of width variations
by comparing the equilibrium bar characteristics developed
in the variable‐width channels to the straight‐channel base
values.

4.2. Analysis Procedure

[34] Before we proceed to study the forcing effect of width
variations, it is useful to define the terminology used in our
analyses. Figure 13 shows the color‐scale bed topography
and the corresponding longitudinal profile of local bar height
12 h after bar formation in the straight channel, where local
bar height is defined as the difference in extreme elevations
between the left‐ and right‐half cross section (i.e., difference
between red and blue lines). The alternate bars are num-
bered in a chronicle fashion, i.e., Bar 1 is the one developed
immediately downstream of the initial disturbance, Bar 2 is
the one immediately downstream of Bar 1, and so forth. The
local bar height profile consists of a series of highest and
lowest points. Bar length (or wavelength) is defined as the
distance between two consecutive lowest points. Keeping
track of the location of the highest point allows for the
evaluation of bar celerity.
[35] Based on the numerical simulations of 16‐h bar

evolution in a 30‐m channel, we found that the first four

Figure 11. Equilibrium forced bed forms developed in 16
variable‐width channels used in numerical experiments.
The results reveal that bar type is determined by dimension-
less wave number lC, whereas bar amplitude is governed
by dimensionless amplitude AC. Central bars are developed
in W02 series (lC = 0.2), while side bars are developed in
W04 ∼ W08 series (lC = 0.4∼0.8). As AC increases from
0.1 to 0.4 (A01 to A04 series), bar amplitude increases
accordingly.

Figure 12. Numerical results: (a) Free bars developed in ref-
erence straight channel 8 h after bar initiation; (b) coexisting
forced and free bars 8 h after initiation of free bars (A02
series); (c) free bar component extracted from the coexisting
bed forms shown in Figure 12b.
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bars (hereinafter referred to as target bars) would reach the
equilibrium stage for the given time and space frames.
Figures 14a and 14b show the evolutions of maximum bar
height (BH), bar length (BL) and bar celerity (BC) of the target
bars developed in the reference straight channel and A02W04
channel, respectively. These results reveal that as the bar
grows, the bar height and length would increase whereas the
bar celerity would reduce. Such trends of evolution are first

experienced by Bar 1, subsequently by Bar 2 to Bar 4, and
all the target bars eventually reach the equilibrium stage after
10 h. The results seen in the straight channel (Figures 14a) are
consistent with previous studies [Defina, 2003; Federici and
Seminara, 2003; Bernini et al., 2006]. The results obtained
from the variable‐width channel (Figure 14b) exhibit similar
trends of evolution, however, they also exhibit a wavy pattern
associated with periodic variations of local width. The bar
height peaks at the narrow sections but troughs at the wide
ones, whereas the bar length becomes minimal at the narrow
sections but maximal at the wide ones. The celerity reduces
at the narrow sections but increases at the wide ones. This
adjustment of bar celerity in response to the variation of local
width is analogous to the experimental result reported by
Whiting and Dietrich [1993], where the migrating alternate
bars would locally stall when in phase with the curvature‐
induced point bars in a sinusoidally meandering channel.
[36] To quantify the global effect rather than the local effect

of width variations on free bars, the equilibrium features of
the target bars in the variable‐width channel (Figure 14b) are
normalized by the corresponding equilibrium values in the
reference straight channel (Figure 14a), resulting in the bar
height ratio (RBH), bar length ratio (RBL), and celerity ratio
(RBC). These normalized equilibrium bar features represent
the relative effects of width variations on free bars, thus may
well be used to compare the results obtained from different
configurations of width perturbations. Moreover, because
all the target bars would not simultaneously reach the equi-
librium stage, we implement a shift‐and‐overlap algorithm
to shift in time the normalized features of the target bars
to obtain the same overlapping sinusoidal trend at the equi-
librium stage. Shown in Figure 15 are the shifted and over-
lapped bar height ratios (A02W04), where the overlapping

Figure 13. Color‐scale bed deformation and the corre-
sponding longitudinal profile of local bar height (difference
between red and blue lines) 12 h after bar initiation in the
straight channel. Bars are numbered in a chronicle fashion.
The bar height profile consists of a series of highest and low-
est points. Bar length is defined as the distance between two
consecutive lowest points. Keeping track of the location of
the highest point allows for evaluation of bar celerity.

Figure 14. Evolutions of bar height BH, bar length BL and celerity BC of target bars developed in (a) ref-
erence straight channel, and (b) A02W04 channel. Data are moving‐averaged with 0.5‐h windows.
(c) Shifted and overlapped equilibrium bar height ratios RBH, bar length ratios RBL, and celerity ratios
RBC of target bars.
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sinusoidal trend at the equilibrium stage and the sequence for
the target bars to reach such stage are clearly demonstrated.
Note that in Figure 15 the x‐axis is converted to the number of
sinusoidal cycles such that the wavy pattern of equilibrium
bar features would echo the periodic width variations.

4.3. Results and Discussion

[37] Shown in Figure 14c are the shifted and matched
equilibrium ratios of bar height, bar length, and celerity of the
target bars (A02W04), where the overlapping sinusoidal
trends of these normalized bar features at the equilibrium
stage are clearly demonstrated. The mean values of the
sinusoidally varying values of RBH, RBL, and RBC deviate
slightly from unity; such deviations represent the global effect
of width variations on free bars, whereas the amplitudes of
the sinusoidally varying ratios represent the local effect of
width variations. The former would be the focus of this study.
When the mean value is <1, the global effect of width var-
iations on free bars is suppressive; when the mean value is
>1, the global effect is enhancive. For example, in Figure 14c
themean values ofRBH,RBL, andRBC are 0.98, 0.99, and 1.02,
respectively, indicating that the equilibrium bar height and
bar length are reduced while the bar celerity is enhanced
relative to the corresponding equilibrium features developed
in the reference straight channel.
[38] The forcing effect induced by the sinusoidal width

variations turns out to be affected by the amplitude and wave
number of width perturbation. Shown in Figure 16 are the
equilibrium mean values of RBH, RBL, and RBC varying with
the dimensionless amplitude AC and wave number lC of
width perturbation. Figure 16a reveals that the equilibrium
mean values of RBH are consistently <1, indicating that the
global effect of width variations on bar height is invariably
suppressive. Such suppressing effect becomes more signifi-
cant with the increase of AC and lC. However, the effect of AC

is greater than that of lC. For example, in Figure 16a (left),
the values of RBH reduce with the increase of AC. For W02 ∼
W06 series, the reductions of RBH with the increase of AC

from 0.1 to 0.4 range between 10 ∼ 20%, while for W08
series the corresponding reduction of RBH is about 30%. In
contrast, in Figure 16a (right), the reductions of RBH with
the increase of lC from 0.2 to 0.8 are much smaller, especially
for A01 and A02 series, for A04 series the corresponding

reduction of RBH is higher, however keeping <20%. These
results are in part consistent with the theoretical prediction
made by Repetto and Tubino [1999], who argued that the
suppressing effect is governed primarily by the amplitude
of width perturbation rather than the wave number. Because
this prediction is based on the small‐amplitude assumption,
it is valid for smaller values of AC (A01 and A02 series),
but would become more ineffective for greater values of AC

(A03 and A04 series).
[39] Similarly, Figure 16b reveals that the suppressing

effect of width variations on bar length increases with AC

and lC. The reductions of RBLwith the increases in AC and lC
are of a similar magnitude, but are smaller than the corre-
sponding reductions of RBH. On the other hand, Figure 16c
reveals that the global effect of width variations can either
reduce or enhance bar celerity, depending on the combination
of AC and lC. For example, for W02 and W04 series the
equilibrium mean values of RBC are consistently >1, indi-
cating that the global effect on bar celerity is enhancive for
smaller values of lC. For larger values of lC (W06 and W08
series), however, the equilibrium mean values of RBC are >1
for smaller values of AC but become <1 as the value of AC

exceeds the limit of small‐amplitude regime. These results are
in agreement with the analytical prediction by Repetto and
Tubino [1999], who argued that width perturbations in gen-
eral would slow down bar propagation, but very slow spatial
variations of channel width (i.e., very small values of lC)
would speed up bar propagation. To date this prediction
has never been verified with any experimental or numerical
data, thus our simulation results are the first evidence avail-
able for backing such an argument. Also, it is shown in
Figure 16c (left) that for smaller lC (W02 and W04 series),
the equilibrium mean values of RBC increase with AC first but
then decline as AC becomes greater than 0.3, while for larger
lC (W06 and W08 series), the equilibrium mean values of
RBC decrease monotonically with the increase of AC. In
Figure 16c (right), the equilibrium means of RBC decline
monotonically with the increase of lC regardless of AC. It
should be noted here that although the bar celerity is enhanced
by smaller values of lC, such enhancing effects necessarily
vanish for truly small values of lC (i.e., as lC → 0).
[40] The above results indicate that the global forcing effect

of width variations may well be quantified using a single
factor that integrates the influences of AC and lC. To this
end, we define a dimensionless forcing factor FC, which is
expressed as

FC ¼ AC exp �Cð Þ ð3Þ

Equation (3) is a modified form of the dimensionless group
that incorporates the amplitude and wave number of width
variations in the analytical framework of perturbation method
[Wu and Yeh, 2005]. The use of FC ensures the collapse of
various data on a single curve. We then plot the equilibrium
mean values of RBH, RBL, and RBC versus the forcing factor
FC, as shown in Figure 17. The invariably suppressing effects
of width variations on bar height and bar length are demon-
strated in Figures 17a and 17b, while a slightly enhancing
effect on bar celerity followed by suppressing effects at
greater values of FC is demonstrated in Figure 17c. The
best fit curves shown in Figures 17a and 17b indicate that
while the suppressing effects on bar height and bar length are

Figure 15. Demonstration of the shift‐and‐overlap algo-
rithm implemented to shift in time the bar height ratios of tar-
get bars to obtain the same overlapping sinusoidal trend at the
equilibrium stage (data from run A02W04).
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both proportional to FC
2.16, the effect on bar height is ∼3 times

that on bar length (i.e., coefficients 0.38 versus 0.13). The
best fit curve shown in Figure 17c is quadratic, indicating that
bar celerity is slightly increased for FC < ∼0.5, but is decreased
at larger values of FC. The maximum increase in bar celerity
is, however, <5% of the corresponding equilibrium migra-
tion speed developed in the reference straight channel.
[41] It is worthwhile to note that, for our experimental

ranges of AC and lC, full suppression (or zero growth) of free
bars above the threshold AC, as predicted by Repetto and
Tubino [1999], is not observed, although most of the AC

values herein used exceed the theoretically predicted thresh-
olds. The discrepancies between the predicted and simulated
results may arise from the small‐perturbation assumption
adopted in the linear stability analysis. Specifically, the
adopted dimensionless amplitude of bed perturbation (A =
0.3), as mentioned earlier, is beyond the small‐amplitude
regime on which the linear stability theory is based. Violation
of this assumption on A would make the contribution of the
third‐order self interactions involving free modes (i.e.,O(A3))
become non‐negligible, leading to unjustified predictions
[Colombini et al., 1987; Repetto, 2000]. To address this

issue, we tried two additional smaller values of A, 0.03 and
0.003, in a channel with the strongest forcing effect (A04
W08). However, full suppression of free bar growth never
took place. Reducing the amplitude of initial bed perturba-
tion would not affect the equilibrium bar features, but would
only increase the time needed to reach equilibrium, consis-
tent with the results obtained from the constant‐width
straight channels [Federici and Seminara, 2003]. One pos-
sible explanation is that some salient physical process or
effect has been poorly treated in the linear analysis, resulting
in inaccurate predictions. Nevertheless, our findings that the
global suppressing effects on free bars are proportional to
FC
2.16, i.e., a nearly quadratic function of FC is, to a certain

extent, coherent with the analytical prediction that the
damping effects on bar growth and migration speed are
proportional to AC

2 [Repetto, 2000].
[42] In any case, an important implication is that the forcing

effect of width variations can significantly alter the equilib-
rium features of free bars. With proper combinations of AC

and lC, the migration speed can be increased while the bar
height and length can be reduced, which offers a potentially

Figure 16. Variations of equilibrium mean values of (a) bar height ratio RBH, (b) bar length ratio RBL, and
(c) celerity ratio RBC with (left) dimensionless amplitude AC and (right) dimensionless wave number lC of
width perturbations.
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more diversified measure for morphological controls and
river management.

5. Conclusions

[43] The forcing effect of channel width variations on free
bars is investigated in this study using a 2D depth‐averaged
morphodynamic model. The novel feature of the model is the
incorporation of a CDG scheme in the bed evolution module.
A correction for the secondary flows induced by streamline
curvature is also included, allowing for simulations of bed
form migration in channels with width variations that are
beyond small‐perturbation regimes. Such correction is par-

ticularly important as the small‐amplitude assumption for
width perturbations is relaxed in our numerical experiments.
[44] Our numerical results provide answers to the questions

posed in section 1. For questions (1) and (2): The global effect
of width variations on bar height is invariably suppressive.
Such suppressing effect increases with the dimensionless
amplitude AC and wave number lC of width variations. For
values of AC in the small‐amplitude regime, lC has little
effects on bar height; for values of AC beyond the small‐
amplitude regime, however, the suppressing effect is depen-
dent on both AC and lC. Bar length reduction increases also
with both AC and lC, but is much weaker than the corre-
sponding effect on bar height. The global effect of width
variations can either increase or reduce bar celerity,
depending on the combination of AC and lC. For smaller
values of lC, the effect on bar celerity is enhancive, such
enhancing effect, however, would vanish as lC → 0. For
larger values of lC, bar celerity tends to increase at small
values of AC, but decreases for AC beyond the small‐
amplitude regime. We present in this paper an unprecedented
numerical data set that verifies the theoretical prediction on
bar celerity enhancement.
[45] For question (3): Regardless of the value of the

dimensionless bed perturbation A used, full suppression of
bar growth above the threshold AC, predicted by Repetto and
Tubino [1999], was not observed in our numerical experi-
ments covering the below‐ and above‐threshold regimes of
AC. Varying the value of A, independently of its small or large
amplitude, would not affect the equilibrium bar features, but
would only alter the time needed to reach equilibrium. The
discrepancy between the analytical prediction and simulation
result needs further investigation.
[46] For question (4): The global effects of width variations

on free bars can be quantified with a dimensionless forcing
factor FC that integrates the influences of AC and lC. The use
of FC allows the collapse of various data on a single curve.
The suppressing effects on bar height and bar length are both
proportional to FC

2.16; the global effect on bar celerity is a
parabolic function of FC, for 0 < FC < ∼0.5 the celerity is
slightly enhanced, while for FC > ∼0.5 the celerity tends to
reduce. These findings are, to some extent, coherent with the
previous analytical prediction that the damping effects on bar
growth and migration speed are proportional to AC

2 .
[47] As a direction for future studies, the stochastic bed

perturbations can be included in the numerical simulations to
assess the uncertainty of bar development. Also, a list of
complicating factors such as small‐scale bed forms, sloping
bed, inertial lag, topographic steering, mixed‐size sediment,
channel curvature, bank erodibility, and floodplain vegetation
[Nelson and Smith, 1989; Lanzoni, 2000b; Seminara et al.,
2002; Defina, 2003; Vasquez, 2005; Li and Millar, 2011],
may be incorporated into the proposed model to extend its
applicability to field‐scale problems.

Appendix A: CDG‐Based Morphodynamic Model
A1. Hydrodynamic Module

[48] The governing equations of the hydrodynamic module
are the depth‐averaged 2D Reynolds equations, obtained by
vertically integrating the full 3D Reynolds equations over the
flow depth [Steffler and Jin, 1993; Molls and Chaudhry,
1995; Defina, 2003]. The resulting system of flow equa-

Figure 17. Variations of equilibrium mean value of (a) bar
height ratio RBH, (b) bar length ratio RBL, and (c) celerity ratio
RBC with dimensionless forcing factor FC. Effects of AC and
lC are integrated in a single factor FC.
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tions includes a continuity equation and two momentum
equations in the x and y (Cartesian planform) directions
(for straight channels x and y directions are usually, but not
necessarily, taken to be the longitudinal and transverse
directions):
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where h = flow depth; (qx, qy) = unit discharge components in
the x‐ and y‐directions = (Uh, Vh), (U, V) = depth‐averaged
velocity components in the x‐ and y‐directions; t denotes
time; g = gravitational acceleration; r = density of water;
zb = elevation of bed surface; Txx, Tyy, Txy, Tyx = depth‐
averaged Reynolds stresses; (tx, ty) = x‐ and y‐components
of bed shear stress t, which are evaluated with the classical
closure relation:
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and

Cf ¼ 6þ 2:5 ln h=2:5dsð Þ½ ��2

where Cf = friction coefficient; ds = sediment size. Note that
the correction for the drag due to small‐scale bed forms
(such as ripples) is not included in (A2) for this study is
mainly concerned with large‐scale bars. The Reynolds
stresses are parameterized using the Boussinesq model:
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where nh = depth‐averaged eddy viscosity = 0.5 u*h
[Ghamry and Steffler, 2002], and u* = bed shear velocity =ffiffiffiffiffiffiffiffi
�=�

p
=
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Cf U 2 þ V 2ð Þp

. Note here that the hydrostatic
assumption is embodied in (A1), which is valid for most
natural channels with small bed slopes. Also, information on
the 3D flowfield is lost. Specifically, the effects of topo-
graphic steering and secondary flows are not captured by the
2D depth‐integrated model [Olesen, 1987]. The former is
typically weak for long bar wavelengths [Nelson, 1990];
while a correction for the effect of secondary flows induced
by streamline curvature is incorporated in the direction of
bed shear stress (see (A16) for details).
[49] Equations (A1) may be expressed in the matrix form,

i.e.,

@8

@t
þ @f x 8ð Þ

@x
þ @f y 8ð Þ

@y
þ Sb 8ð Þ ¼ 0 ðA4Þ

and

8 ¼
h
qx
qy

2
4

3
5; f x 8ð Þ ¼

qx

q2x
h
þ gh2

2
� Txxh

�

qxqy
h

� Tyxh

�

2
6666664

3
7777775
;

f y 8ð Þ ¼

qy

qxqy
h

� Txyh

�

q2y
h
þ gh2

2
� Tyyh

�

2
6666664

3
7777775
; Sb 8ð Þ ¼

0

gh
@zb
@x

þ �x
�

gh
@zb
@y

þ �y
�

2
6666664

3
7777775

in which 8 = solution vector; fx and fy = flux vectors in the x
and y directions, respectively; Sb = source vector related to the
bed characteristics.
[50] For the FE formulation, the solution inside an element

is approximated by the nodal values. For the triangular ele-
ments, this takes the form

~8 ¼ FB ðA5Þ

and

~8 ¼
~h
~qx
~qy

2
4

3
5;F ¼

h1 h2 h3
qx;1 qx;2 qx;3
qy;1 qy;2 qy;3

2
4

3
5;B ¼

B1

B2

B3

2
4

3
5

where ~8 = approximate‐solution vector; F = nodal‐solution
matrix, in which hi, qx,i, and qy,i are solutions at node i (for i =
1, 2, 3); B = vector of local basis functions Bi (also known
as shape, trial, or interpolation functions), herein linear
Lagrange interpolation functions are used. Replacing the
exact‐solution vector 8 with the approximate‐solution
vector ~8, and applying the Petrov‐Galerkin weighted‐
residual method to (4) leads toZ
W

B̂i
@~8

@t
þ @f x ~8ð Þ

@x
þ @fy ~8ð Þ

@y
þ Sb ~8ð Þ

� �
dW ¼ 0; for i ¼ 1; 2; 3

ðA6Þ

where W = individual element domain; B̂i = matrix of
weighting (or test) functions for node i. The integration in
(6) proceeds on an element‐by‐element basis. For the CDG
scheme [Hicks and Steffler, 1992; Ghanem et al., 1995], the
weighting‐function matrix B̂i is given by

B̂i ¼ Bi þWi ¼
Bi 0 0

0 Bi 0

0 0 Bi

2
64

3
75

þ ! DxWx ~8ð Þ @Bi

@x
þDyWy ~8ð Þ @Bi

@y

� �
; for i ¼ 1; 2; 3

ðA7Þ

where Bi = diagonal matrix of Bi; Wi = upwind matrix for
node i; w = upwinding coefficient ranging between 0.25 ∼
0.75, throughout this study a value of 0.5 is used; Dx and
Dy = mean sizes of elements; Wx (~8) and Wy (~8) = x‐
and y‐components of upwind matrix, which control the
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distribution (amount and direction) of the numerical dissi-
pation, and are calculated according to (A8) below [Hughes
and Mallet, 1986], only with 8 replaced by ~8:

Wx 8ð Þ ¼ Ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y

q	 
�1

; Wy 8ð Þ ¼ Ay

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y

q	 
�1

ðA8Þ

where Ax and Ay = advection (or convection) matrices in the
x and y directions, obtained from the non‐conservation form
of (A4):

@8

@t
þ Ax

@8

@x
þ Ay

@8

@y
þ Sb 8ð Þ ¼ 0 ðA9Þ

in which

Ax ¼ @f x 8ð Þ
@8

¼
0 1 0

gh� U2 2U 0
�UV V U

2
4

3
5;

Ay ¼ @f y 8ð Þ
@8

¼
0 0 1

�UV V U
gh� V 2 0 2V

2
4

3
5

ðA10Þ

The eigenvalues of (A10) are the characteristic velocities of
flow disturbances. For example, the eigenvalues of Ax are
U, U +

ffiffiffiffiffi
gh

p
, and U −

ffiffiffiffiffi
gh

p
, which are the characteristic

velocities in the x direction. The inverse matrixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y

q	 
−1
is calculated using the numerical method

suggested by Hoger and Carlson [1984].
[51] The quasi‐steady approximation of the flowfield per-

mits us to omit the time derivative in (A6). Substituting (A7)
into (A6) and integrating (A6) by parts applying the Green’s
first identity would result in the following weak (or varia-
tional) form:

Z
G

Bi f x ~8ð Þnx þ f y ~8ð Þny
� �

dG

þ
Z
W

BiSb ~8ð Þ � f x ~8ð Þ @Bi

@x
þ f y ~8ð Þ @Bi

@y

� �� �
dW

þ
Z
W

! DxWx ~8ð Þ @Bi

@x
þDyWy ~8ð Þ @Bi

@y

� �� �

� @f x ~8ð Þ
@x

þ @f y ~8ð Þ
@y

þ Sb ~8ð Þ
� �

dW ¼ 0; for i ¼ 1; 2; 3 ðA11Þ

where G = boundary of W; (nx, ny) = x‐ and y‐components of
outward unit normal vector n. The boundary integral term in
(A11) represents the natural fluxes across the element
boundaries, which provides an accurate and easy means for
specifying boundary conditions. For example, for the conti-
nuity equation (A1a), the boundary normal flux qn is given by

qn ¼ ~qxnx þ ~qyny ðA12Þ

In the system of equations for the entire computational
domain, all the inter‐element boundary integrals will cancel,
thus only the fluxes across the global boundary will remain.

For the wall boundaries, qn is set equal to zero; for the
upstream inflow boundary, qn is a specified unit discharge
qin; for the downstream outflow boundary, qn is treated as
an unknown to be solved while a water level needs to be
specified.
[52] The Newton‐Raphson iterative technique is used to

solve the system of equations (A11) for all elements. The
iteration procedure is repeated until the error norm of the
nodal solutions F becomes smaller than the specified toler-
ance (10−6 is used herein) [Steffler, 1997]. The flowfield so
obtained is then used in the bed evolution module to calculate
the sediment transport rates and, subsequently, the evolution
of bed topography, as described below.

A2. Bed Evolution Module

[53] Considering the continuity of sediment associated
with bed load transport, the evolution of bed topography may
be described by the 2D Exner equation:

1� �ð Þ @zb
@t

þ @qb;x
@x

þ @qb;y
@y

¼ 0 ðA13Þ

where zb = bed elevation; l = bed porosity (a default value of
0.4 is used); (qb,x, qb,y) = x‐ and y‐components of bed load
transport rate, defined by

qb;x; qb;y
� � ¼ qb cos	; sin	ð Þ ðA14Þ

where qb = volumetric bed load transport rate per unit width;
a = angle between bed load motion and x‐axis. For channels
with large‐scale bed forms (bars), the bed load angle a is
affected by the local bed shear stress and lateral bed slope
[Blondeaux and Seminara, 1985], as expressed by

sin	 ¼ sin
� rffiffiffi
�

p @zb
@y

ðA15Þ

wherec = angle between local bed shear stress and x‐axis; � =
Shields stress = t/(rs − r)gds, where t = rCf (U

2 + V2), rs =
density of sediment; r = a coefficient ranging between 0.3 ∼ 1:
a value of 0.3 is used here accounting for the gravitational
effect associated with the gently varying transverse bed gra-
dient [Talmon et al., 1995; Wu and Yeh, 2005]. For straight
channels, where centripetal acceleration is absent, the devi-
ation of the local shear direction from the x‐axis is attributed
to the effects of depth‐averaged transverse velocity and sec-
ondary flows induced by streamline curvature (see Wu and
Yeh [2005] for more details), as expressed by

sin
 ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V 2

p � ahCs ðA16Þ

where a = helical flow coefficient typically ranging between
1 ∼ 10 [Olesen, 1983], a value of 5 is used here accounting
for the streamline convergence and divergence induced by
periodic width variations; Cs = local curvature of streamline,
determined as follows [Repetto et al., 2002]:

Cs ¼ �@ V=Uð Þ=@x
1þ V=Uð Þ2
h i3=2 ðA17Þ
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Note here that the correction for the inertial adaptation is not
included in (A16) or (A17), which is justified for the present
study because the phase lag between the bed topography and
flowfield is not very significant in straight channels with
sinusoidal width variations [Wu and Yeh, 2005]. The bed
load transport rate qb is evaluated using the Meyer‐Peter and
Müller (MPM) formula:

qb ¼ 8 �� �cð Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s � �ð Þgd3s =�

q
ðA18Þ

where �c = critical Shields stress (= 0.047). As mentioned
earlier, the corrections for the effects of longitudinal bed
slope and small‐scale ripples [Defina, 2003] are not incor-
porated in (A18) because such effects are negligible in the
present study.
[54] Applying the Petrov‐Galerkin weighted‐residual

method to (A13) leads to

Z
W

Bi þWb;i

� �
1� �ð Þ @~zb

@t
þ @qb;x ~8ð Þ

@x
þ @qb;y ~8ð Þ

@y

� �
dW ¼ 0;

for i ¼ 1; 2; 3 ðA19Þ

where ~zb = approximate bed elevation in an element =P3
j¼1 Bjzb,j, zb,j = bed elevation at node j;Wb,i = bed‐evolution

upwind function for node i. For the CDG scheme, Wb,i is
expressed as

Wb;i ¼ ! Dx Wb;x ~8ð Þ @Bi

@x
þDy Wb;y ~8ð Þ @Bi

@y

� �
; for i ¼ 1; 2; 3

ðA20Þ

where Wb,x (~8) and Wb,y (~8) = x‐ and y‐components of bed‐
evolution upwind function, given by

Wb;x ~8ð Þ ¼ 1� ~Fr
2

1� ~Fr
2

 
~qxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~q2x þ ~q2y
q ; Wb;y ~8ð Þ ¼ 1� ~Fr

2

1� ~Fr
2

 
~qyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~q2x þ ~q2y
q

ðA21Þ

where ~Fr2 = (~qx
2 + ~qy

2)/g~h3. Derivation of (A21) is a novel
contribution of this study, as given in Appendix B. Similarly,
integrating (A19) by parts would lead to the following weak
form:

1� �ð Þ
Z
W

Bi þWb;i

� � @~zb
@t

� �
dW�

Z
W

qb;x ~8ð Þ @Bi

@x
þ qb;y ~8ð Þ @Bi

@y

� �
dW

þ
Z
W

Wb;i
@qb;x ~8ð Þ

@x
þ @qb;y ~8ð Þ

@y

� �
dW

þ
Z
G

Bi qb;x ~8ð Þnx þ qb;y ~8ð Þny
� �

dG ¼ 0; for i ¼ 1; 2; 3

ðA22Þ

in which the boundary integral term can be used to specify
bed load fluxes across the boundaries, namely, the boundary
normal bed load flux qb,n = qb,x (~8)nx + qb,y (~8)ny. For the wall
boundaries, qb,n is set as zero; for the upstream boundary, qb,n
is a specified bed load transport rate qb,in; for the down-

stream boundary, qb,n is an unknown to be solved. Using the
forward‐difference scheme to discretize the time derivative
term in (A22) leads to the following explicit form:Z
W

Bi þWb;i

� �
~ztþDt
b dW ¼

Z
W

Bi þWb;i

� �
~ztb dWþ Dt

1� �ð Þ

�
Z
W

qb;x ~8ð Þ @Bi

@x
þ qb;y ~8ð Þ @Bi

@y

� �
dW

8<
:

�
Z
W

Wb;i
@qb;x ~8ð Þ

@x
þ @qb;y ~8ð Þ

@y

� �
dW

�
Z
G

Bi qb;x ~8ð Þnx þ qb;y ~8ð Þny
� �

dG

9=
;; for i ¼ 1; 2; 3 ðA23Þ

where ~zb
t+Dt =

P3
j¼1 Bjzb, j

t+Dt = approximate bed elevation
inside an element at an advanced time t + Dt. With the
system of equations (A23) obtained for all elements, the
nodal values zb,j

t+Dt over the entire computational domain can
be solved. These solutions are then used as the input topo-
graphic data to the hydrodynamic module for updating the
flowfield.

Appendix B: Upwind Function for Bed Evolution
Module

[55] To derive the bed‐evolution upwind functions, we
must transform the Exner equation into a convective form.
We start with the 2D depth‐averaged steady flow equations in
the channel‐fitted coordinate system [Mosselman, 1998] such
that a streamwise quasi‐1D approach can be adopted:

@ hUsð Þ
@s

þ @ hUnð Þ
@n

þ hUs

Rn
þ hUn

Rs
¼ 0 ðB1Þ

Us
@Us

@s
þ Un

@Us

@n
þ g

@ zb þ hð Þ
@s

þ UsUn

Rs
� U2

n

Rn
þ Ts ¼ 0 ðB2Þ

Us
@Un

@s
þ Un

@Un

@n
þ g

@ zb þ hð Þ
@n

þ UsUn

Rn
� U2

s

Rs
þ Tn ¼ 0 ðB3Þ

where (s, n) are the streamwise and cross‐stream directions,
which, in general, do not necessarily coincide with the x and y
directions; (Us, Un) = s‐ and n‐components of depth‐
averaged velocity; (Rs, Rn) = radii of curvature of the s‐ and
n‐coordinate lines; (Ts, Tn) = s‐ and n‐components of
friction term. For a straight or weakly curved channel, both
Rs and Rn are much greater than the hydraulic length scales,
allowing us to neglect the curvature‐related terms. We fur-
ther resort to the assumption of streamwise quasi‐1D flow,
i.e., Us � Un and Us

2 ≈ U2 + V2, such that the flow equations
are reduced to

Us
@h

@s
þ h

@Us

@s
¼ 0 ðB4Þ

Us
@Us

@s
þ g

@zb
@s

þ g
@h

@s
þ Ts ¼ 0 ðB5Þ
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Substituting (B4) into (B5), and rearranging the resulting
equation yields

@Us

@s
¼ Us

gh� U2
s

� �
g
@zb
@s

þ Ts

� �
ðB6Þ

The Exner equation in the channel‐fitted coordinate system
is given by [Mosselman, 1998]:

1� �ð Þ @zb
@t

þ @qb;s
@s

þ @qb;n
@n

þ qb;s
Rn

þ qb;n
Rs

¼ 0 ðB7Þ

where qb,s and qb,n = unit bed load transport rates in the
streamwise and cross‐stream directions. Based on the same
assumptions described above, we obtain the quasi‐1D form
of (B7):

1� �ð Þ @zb
@t

þ @qb;s
@s

¼ 0 ðB8Þ

[56] Note that qb,s is a function of bed shear stress, which in
turn varies with the flow velocity and depth, as given in (A2).
Here we follow Jansen et al. [1979] and Lisle et al. [2001] to
treat Cf as a function of grain size only and neglect the minor
influence of flow depth on qb,s. Applying the chain rule to
(B8), and substituting (B6) into the resulting equation would
yield

@zb
@t

þ 1

1� �

� �
@qb;s
@Us

@Us

@s
¼ @zb

@t

þ g

1� �

	 
 Us

gh� U2
s

� �
@qb;s
@Us

� �
@zb
@s

þ S ¼ 0 ðB9Þ

where

S ¼ 1

1� �

� �
UsTs

gh� U2
s

� �
@qb;s
@Us

Transformation between the channel‐fitted and Cartesian
coordinate systems gives

@zb
@s

¼ @zb
@x

@x

@s
þ @zb

@y

@y

@s
ðB10Þ

Substituting (B10) into (B9) leads to

@zb
@t

þ C Us
@x

@s

� �
@zb
@x

þ C Us
@y

@s

� �
@zb
@y

þ S ¼ 0 ðB11Þ

where

C ¼ g

1� �

	 
 1

gh� U2
s

� �
@qb;s
@Us

[57] The following relations hold for the streamwise quasi‐
1D flow:

U ¼ Us
@x

@s
V ¼ Us

@y

@s
ðB12Þ

[58] Substituting (B12) into (B11) results in

@zb
@t

þ CU
@zb
@x

þ CV
@zb
@y

þ S ¼ 0 ðB13Þ

Note that (B13) is a convection form of the Exner equation,
analogous to the form given in (A9), indicating that the
propagation of bed disturbance is mainly driven by convec-
tive flow velocities. The x‐ and y‐components of the bed‐
evolution upwind function, according to (A8) and (B13), thus
take the form

Wb;x 8ð Þ ¼ CU

Cj j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiU2 þ V 2
p ¼ 1� Fr2

1� Fr2
  qxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2x þ q2y
q

Wb;y 8ð Þ ¼ CV

Cj j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiU2 þ V 2
p ¼ 1� Fr2

1� Fr2
  qyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2x þ q2y
q ðB14Þ

where Fr2 = (U2 + V2)/gh ≈ Us
2/gh is the Froude number.

Equation (B14) indicates that for subcritical flows the upwind
function is of the same direction as the convective flow,
whereas for supercritical flows the upwind function is of the
opposite direction to the convective flow. At last, replacing
the nodal values 8 in (B14) with the approximate solutions ~8
leads to (A21).

Notation

a helical flow coefficient;
A dimensionless amplitude of bed perturba-

tion (= Ab /h0);
Ab amplitude of bed perturbation;
AC dimensionless amplitude of width varia-

tions;
Ax, Ay advection matrices in the x and y

directions;
B, Bi vector of Bi, and diagonal matrix of Bi;

BC, BH, BL bar celerity, maximum bar height, and
bar length;

Bi local basis function;
B̂i matrix of weighting (or test) functions for

node i;
B0, B(x) mean half‐width of the channel, and chan-

nel half‐width at x;
Cf friction coefficient;
Cs local curvature of streamline;
ds sediment grain size;
FC dimensionless forcing factor = AC exp(lC);

fx, fy flux vectors in the x and y directions;
Fr, ~Fr Froude numbers corresponding to 8

and ~8;
g gravitational acceleration;

h, h0 flow depth, and reference uniform flow
depth;

(hi, qx,i, qy,i) solutions of flow at node i (for i = 1, 2,
3);

Lb longitudinal length of bed perturbation;
LC wavelength of width variations;

(nx, ny) x‐ and y‐components of outward unit
normal vector n;

qb, qb,n bedload transport rate per unit width, and
boundary normal bedload flux;

qb,in unit bedload transport rate from upstream
inflow boundary;

(qb,s, qb,n) s‐ and n‐components of qb;
(qb,x, qb,y) x‐ and y‐components of qb;
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qin, qn unit discharge from upstream boundary,
and boundary normal flux;

(qx, qy) x‐ and y‐components of unit discharge =
(Uh, Vh);

r an empirical coefficient for lateral slope
(gravitational) effect;

RBC, RBH, RBL ratios of bar celerity, maximumbar height,
and bar length;

Rs, Rn radii of curvature of s‐ and n‐coordinate
lines;

(s, n) streamwise and cross‐stream directions
in channel‐fitted coordinate system;

Sb source vector of bed characteristics;
S0 channel slope;
t time;

Ts, Tn s‐ and n‐components of friction term;
Txx, Txy, Tyx, Tyy depth‐averaged Reynolds stresses;

u* bed shear velocity;
(U, V), (Us, Un) (x, y) and (s, n) components of depth‐

averaged velocity;
Wb,i bed‐evolution upwind function for node i;

Wb,x, Wb,y x‐ and y‐components of bed‐evolution
upwind function;

Wi, Wx, Wy upwind matrix for node i, and x‐ and
y‐components of upwind matrix;

(x, y) Cartesian planform (longitudinal and
transverse) coordinates;

zb, zb,j, ~zb bed elevation, zb at node j, and approxi-
mate zb in an element;

a angle between bedload motion and x‐axis;
b aspect (width to depth) ratio (= B0 /h0);
c angle between local bed shear stress and

x‐axis;
dzb bed perturbation;

Dx, Dy mean element sizes;
F nodal‐solution matrix;
G boundary of W;

8, ~8 solution vector, and approximate‐solution
vector;

l bed porosity;
lC dimensionless wavenumber of width var-

iations (= 2pB0 /LC);
nh depth‐averaged eddy viscosity;

�, �c, �0 Shields stress, critical Shields stress, and
� of reference uniform flow;

r, rs density of water, and density of sediment;
t, (tx, ty) bed shear stress, and x‐ and y‐components

of t;
w upwinding coefficient;
W element domain.
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