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a b s t r a c t

This paper presents the support vector machine approach to predict the longitudinal dispersion coef-
ficients in natural rivers. Collected published data from the literature for the dispersion coefficient for
wide range of flow conditions are used for the development and testing of the proposed method. The
proposed SVM approach produce satisfactory results with coefficient of determination = 0.9025 and root
mean square error = 0.0078 compared to existing predictors for dispersion coefficient.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The longitudinal dispersion of pollutants in rivers is significant
to practicing hydraulic and environmental engineers for designing
outfalls or water intakes and for evaluating risks from accidental
releases of hazardous contaminants [1]. Many researchers have
contributed to the understanding of the mechanisms of longitu-
dinal dispersion in rivers, beginning with the simplest dispersion
of dissolved contaminants in pipe flow [2]. Later, the concept of dis-
persion was extended to the mixing in open channels and further
to natural streams. Many theoretical and empirical formulations
have been proposed to determine the longitudinal dispersion coef-
ficient. This paper presents an alternative approach to estimate
longitudinal dispersion coefficient in natural streams using sup-
port vector machine (SVM). Fitness of models has been tested
using the observed dispersion coefficient as available in literature.
Data corresponding to various natural streams has been used for
this purpose. From the published results, it has been shown that
the longitudinal dispersion coefficients vary within a wide range
(1.9–2883.5).

Accurate estimation of longitudinal dispersion coefficient is
required in several applied hydraulic problems such as: river
engineering, environmental engineering, intake designs, estuaries
problems and risk assessment of injection of hazardous pollutant
and contaminants into river flows [3,4]. Investigation of quality
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condition of natural rivers by one-dimensional (1D) mathematical
model requires the best estimations for longitudinal dispersion
coefficient [5]. When measurements and real data of mixing pro-
cesses in river are available, the longitudinal dispersion coefficient
is determined simply, but in rivers that the mixing and dispersing
data is not available and these phenomena are not known, should
use alternative methods for estimation of dispersion coefficient
values [6]. In these cases, because of the complexity of mixing
phenomena in natural rivers, the best estimations of dispersion
coefficients are not possible and usually these values are deter-
mined by several simple regressive equations [1]. There are several
empirical equations for estimation of longitudinal dispersion
coefficient in natural rivers that have presented in next sections
[7]. Estimation of longitudinal dispersion coefficient in rivers using
equations of Table 1 requires hydraulic and geometry of data sets.
These equations are valid only in their calibrated ranges of flow
and geometry conditions and for larger or smaller ranges have not
good results [17,18].

The main aim of this note is to develop the SVM for disper-
sion coefficient and assessing the accuracy of these methods in
comparisons with real data and at least not at end, developing a
new and accurate methodology for dispersion coefficient deter-
mination. Therefore, the present study applies a soft computing
technique SVM.

2. Support vector regression

When support vector machines were first used for classifica-
tion, in 1996, another version of SVMs was proposed by Drucker

1568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Table 1
Empirical equations for estimation of longitudinal dispersion coefficient [14].

Reference Equation Author

Tayfour and Singh
[21]

Kx = 5.93HU* Elder [22]

Deng et al. [1] Kx = 0.58(H/U)2UB McQuivey and
Keefer [23]

Fisher et al. [5] Kx = 0.011U2B2/HU* Fisher et al. [5]
Seo and Bake [4] Kx = 0.55BU*/H2 Li et al. [24]
Seo and Bake [4] Kx = 0.18(U/U*)0.5(B/H)2HU* Liu [25]
Tavakollizadeh and
Kashefipur [26]

Kx = 2.0(B/H)1.5HU* Iwasa and Aya
[27]

Seo and Cheong [7] Kx = 5.92(U/U*)1.43(B/H)0.62HU* Seo and Cheong
[7]

Sedighnezhad et al.
[3]

Kx = 0.6(B/H)2HU* Koussis and
Rodriguez-
Mirasol
[15]

FaghforMaghrebi
and Givehchi [28]

Kx = 0.2(B/H)1.3(U/U*)1.2HU* Li et al. [24]

Rajeev and Dutta
[13]

Kx/HU* = 2(W/H)0.96(U/U*)1.25 Rajeev and Dutta
[13]

et al. [8]. The new SVM version contains all of the main features
that characterize the maximum margin algorithm, including a non-
linear function that is leaned by linear learning machine mapping
into high dimensional kernel induced feature space. The capacity
of the system is controlled by parameters that do not depend on
the dimensionality of the feature space.

In the same way as with a classification approach, there is moti-
vation to seek and optimize the generalization bounds given for
regression. They rely on defining the loss function that ignores
errors, which are situated within a certain distance of the true
value. This type of function is often called epsilon intensive loss
function. In SVR, the input x is first mapped onto a m-dimensional
feature space using some fixed (nonlinear) mapping, and then a lin-
ear model is constructed in this feature space. Using mathematical
notation, the linear model (in the feature space) f(x, w) is given by

f (x, w) =
n∑

j=1

wigi(x) + b (1)

where gj(x), j = 1, . . ., n are a set of nonlinear transformations, and w
and b are the weight vector and the bias terms. The quality of esti-
mation is measured by the loss function L (y, f(x, w)). SVM regression
uses a new type of loss function called the insensitive loss function
proposed by Vapnik [19,20]:

Lε(y, f (x, w)) =
{

0 if |y − f (x, w)| ≤ ε
|y − f (x, w)| − ε otherwise

(2)

The empirical risk is

Remp(w) = 1
m

m∑
i=1

Lε(yi, f (xi, w)) (3)

SVR performs linear regression in the high-dimension feature
space using ε insensitive loss and, at the same time, tries to reduce
model complexity by minimizing ||w||2. This can be described
by introducing (non-negative) slack variables, �i, �∗

i
= 1, . . . , m to

measure the deviation of training samples outside the ε-insensitive
zone. Thus, SVR is formulated as the minimization of the following
function:

min
1
2

||w||2 + C

m∑
i=1

(�i + �∗
i )

such that

⎧⎨
⎩

yi − f (xi, w) ≤ ε + �∗
i

f (xi, w) − yi ≤ ε + �i

�i, �∗
i

≥ 0, i = 1, . . . , m

(4)

This optimization problem can transformed into the dual prob-
lem and its solution is given by

f (x) =
nsv∑
i=1

(˛i − ˛∗
i )k(xi, x)

subject to 0 ≤ ˛∗
i

≤ C, 0 ≤ ˛i ≤ C

where nsv is the number of support vectors (SVs) and the k (xi, x) is
the kernel function.

This optimization model can be solved using the Lagrangian
method, which is almost equivalent to the method used to solve
the optimization problem in the separable case.

Accordingly, the coefficients ˛i can be found by solving the fol-
lowing convex quadratic programming problem.

The kernel function is formulated as

k(x, xi) =
n∑

j=1

gj(x)gj(xi) (5)

It is well known that SVM generalization performance (esti-
mation accuracy) depends on a good setting of meta-parameters
parameters C and ε and the kernel parameters. The choices of C and
ε control the prediction (regression) model complexity. The prob-
lem of optimal parameter selection is further complicated because
the SVM model complexity (and hence its generalization perfor-
mance) depends on all three parameters Smola and Schölkopf [9].
Kernel functions are used to change the dimensionality of the input
space to perform the classification (or regression) task with more
confidence.

Two common kernel functions are radial basis function (RBF):

k(x, x′) = exp(−� ||x − x′||2) (6)

and a polynomial function:

k(x, x′) − (xx′ + 1)p (7)

The radial parameters � > 0 and p are the kernel specific param-
eters; they are set to values priory and used throughout the training
process. Other kernel functions are also introduced that are to be
used for specific purposes [10].

An algorithm for solving the problem of regression with sup-
port vector machines was proposed by Platt [11] called sequential
minimal optimization (SMO). It puts chunking to the extreme by
iteratively selecting subsets only of size 2 and optimizing the target
function with respect to them. This algorithm has a much simpler
background and is easier to implement. The optimization sub prob-
lem can be solved analytically solved, without the need to use a
quadratic optimizer. Shevade et al. [12] proposed an improvement
that enhances the algorithm such that it performs significantly
faster.

3. Model development

The scenarios considered in building the SVM model inputs
(flow width (W)/flow depth (H)), flow velocity (U)/shear veloc-
ity (U*)) and output (longitudinal dispersion coefficient (m2/s)
Kx/flow depth (H) × shear velocity (U*). From the collected data
sets (Table 2) used in this study, around 60% (58 data set) of these
patterns were used for training (chosen randomly until the best
training performance was obtained), while the remaining patterns
about 20% (20 data set) were used for testing, and about 20% (18
data set) for validating, the SVM model. Software was developed to
perform the analysis, and can be obtained from the first author.

The Neurosolutions 5.0 toolbox, developed by Nerodimension
Inc. [16], is used while developing SVM model. The model parame-
ters ˛i and ε were initially fixed as 1 and 0. A genetic algorithm
was used to obtain the optimal value of ε. During the genetic
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Table 2
Range of collected data [29].

Flow
width, W
(m)

Flow depth,
H (m)

Flow
velocity, U
(m/s)

Shear
velocity, U*

(m/s)

Kx (m2/s)

Max value 711.20 25.1 2.23 0.553 2883.5
Min value 11.89 0.22 0.034 0.0024 1.9
Avg. value 59.86 3.69 0.71 0.095 223.1

search, an initial population of chromosomes (ε values) was cre-
ated and the fitness of each candidate solution (chromosome)
was evaluated against the fitness function (MSE of a threefold
cross-validation set). Then the population is evolved through mul-
tiple generations (through mutation, crossover and selection), and
the optimal solution (chromosome) was selected. Optimal ε is
found to be 0.0001 for the present problem. The optimal val-
ues of kernel parameters C and � are found to be 0.35 and 20.0,
respectively.

4. Results and discussion of SVM

The performance of the SVM model was compared with the
traditional longitudinal dispersion coefficient equations. Overall,
particularly for field measurements, the SVM model gives better
predictions than the existing models. The SVM model produced
the least errors (R = 0.95, R2 = 0.9025 and RMSE = 0.00780) and
Fig. 1 show the observed and estimated Kx/HU* of the unseen
training data. From Fig. 2 (validation set) it is clear that the tra-
ditional predictor [13] under or over estimate the longitudinal
dispersion coefficient. SVM produced for test data correlation coef-
ficient, R = (0.93), coefficient of determination R2 (=0.8641) and root
mean square error, (RMSE = 2.234). It can be concluded that for
all the data sets the SVM model give either better or comparable
results.

The above result are not astonishing, since the most significant
advantage of the proposed SVM compared to classical regression
analysis based models (traditional equations) is that it is capa-
ble of mapping the data into a high dimensional feature space,
where a variety of methods (described in the previous section)
are used to find relations in the data. Since the mapping is quite
general, the relations found in this way are accordingly very
general.

Fig. 1. Comparison of observed versus predicted Kx/HU* for training data using SVM.

Fig. 2. Comparison of observed versus predicted Kx/HU* by SVM and Rajeev and
Dutta for validation data set.

5. Conclusions

Longitudinal dispersion in rivers is a complex phenomenon.
Natural channels have bends, changes in shape, pools and many
other irregularities, all of which contribute significantly to the
dispersion process. To overcome the complexity and uncertainty
associated with the dispersion, this research demonstrates that an
SVM model can be applied for accurate prediction of longitudinal
dispersion coefficients. The genetic programming will be used to
predict longitudinal dispersion coefficient in the future with more
database.

Notations

B, W flow width (m)
H flow depth (m)
U flow velocity (m/s)
U* shear velocity (m/s)
Kx longitudinal dispersion coefficient (m2/s)
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