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d’un modele de transport de sédiments
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Research Institute, National Taiwan University, Taipei, Taiwan, R.O.C.

HSIEH WEN SHEN, Professor, Department of Civil and Environmental Engineering, University
of California, Berkeley, CA 94720, USA

ABSTRACT

First-order approximation techniques for estimating stochastic parameters of a sediment transport model are
presented. The non-homogeneous compound Poisson model of Shen-Todorovic eliminating certain idealized
assumptions to describe the movement of sediment in natural streams is a revision of the earlier homogeneous
model of Einstein-Hubbell-Sayre, However, the complexity of the non-homogeneous model and the difficulty
in determining the model parameters has limited its application. The proposed approximation techniques
employ the first-order Taylor expansions, with respect to a selected temporal or spatial point by a finite differ-
ence, of the cumulative probability distribution function (CDF) of particle displacements. The first-order
expansions are divided by the original CDF for further simplification. The simplified forward- and backward-
expansions are numerically solved as a system to evaluate the parameter at the specified point. The non-homo-
geneous parameters are pursued with successive applications of this procedure to various points. An example
of sediment infiltration into the gravel column is provided showing the procedures of parameter estimation and
the verification of results. Temporal and spatial variations of the parameters are also discussed.

RESUME

Nous présentons ici des techniques d’approximation au premier ordre pour estimer les paramétres
stochastiques d’un modele de transport de sédiments. Le modéle de Poisson, composé non homogeéne, de
Shen-Todorovic éliminant certaines hypotheses idéalisées pour décrire le mouvement des sédiments dans les
écoulements naturels est une version révisée du modele plus ancien d’Einstein, Hubbell et Sayre. Cependant,
sa complexité et les difficultés d’estimation de ses parameétres limitent ses applications. Les techniques
d’approximation employées utilisent ici des développements de Taylor au premier ordre, aux différences finies
avec des pas de temps et d’espace appropriés, pour approcher la fonction de distribution cumulative (CDF) des
déplacements des particules. Pour plus de commodité, ils sont rapportés a la CDF originale. Ces schémas
simplifiés amont-aval sont résolus numériquement pour évaluer la valeur au point considéré. Les paramétres
non homogénes sont ainsi déterminés de point en point par reconductions successives de la procédure. Un
exemple d’infiltration de sédiments dans une colonne de graviers est présentée ici pour illustrer la méthode
utilisée et vérifier les résultats. Les variations spatiales et temporelles des paramétres sont également
commentées,

1 Introduction

Sediment transport has been widely recognized as a stochastic process because of the random char-
acteristics in natural streams/rivers such as turbulent fluctuations, flow non-uniformity, grain con-
figurations, and obstacles attributed to topographic features [e.g., Paintal, 1971; Hassan et al.,
1991]. Einstein [1937], based on his observations that bedload particles move in a sequence of
alternate steps and rests, proposed a homogeneous compound Poisson model which is regarded as
the first application of stochastic model in sediment transport [Hung and Shen, 1972]. From a theo-

Revision received September, 1998. Open for discussion till October 31, 1999.

JOURNAL OF HYDRAULIC RESEARCH, VOL. 37, 1999, NO. 2 213



02:47 2 January 2011

[International Association for Hydro-Environment Engineering and Research] At:

Downloaded By:

retical analysis, Einstein concluded that the probability density functions (pdf) of the two random
variables, step length and rest period, are both exponentially distributed. Since then, a number of
stochastic models for sediment transport have been presented, primarily on the basis of different pdf
or mechanisms adopted for analysis (see Hung and Shen [1972] and Shen and Cheong [1980] for
further discussions). Hubbell and Sayre [1964] achieved to develop a stochastic model identical
with Einstein’s homogeneous Poisson model from a probabilistic approach and undertook flume
and field experiments for confirmation. Although the results are encouraging, the underlying
assumptions of Einstein-Hubbell-Sayre (E-H-S) model require further inspection. First of all, theo-
retically the pdf of step length and rest period should not change spatially and temporally in a
steady and uniform flowfield. However, it does not guarantee that the probability for a particle to
make a step at any location or moment is constant. Hence the homogeneity assumption of the ran-
dom process is questionable. In addition, steady and uniform flow is a hydraulic condition that
rarely occurs in natural streams [cf. Hung and Shen, 1972]. Nonetheless, the ideal E-H-S model has
provided room for modification to the subsequent investigators [e.g., Shen and Todorovic, 1971;
Vukmirovic and Wilson, 1977].

With less restrictive assumptions, Shen and Todorovic [1971] constructed a general stochastic
model describing one-dimensional movement of bedload particles. They regarded transport of sedi-
ment as a non-homogeneous random process and hypothesized that rest periods and step lengths are
time- and space-dependent variables respectively. Through a probabilistic analysis, they succeeded
in deriving a cumulative probability distribution function (CDF) of travel distance expressed as the
following:

: . {_[M(T)dr} Dkz(ﬁ)d.’;}
Fi/(x) = em{—]k,(r)a’r] ; exp[__[xg(g)dg] 3% o )

min!

1 v m=0n=m

0 ]

where F(x) is the probability of particle displacement at time ¢ being less then or equal to x, A, and
A, are temporal and spatial intensity functions physically representing the inverse of average rest
period and step length respectively. The probabilistic process quantified by (1) is a non-homogene-
ous compound Poisson process. One would immediately notice that E-H-S model is a special case
of this more general description. Mathematically the non-homogeneous model is an improvement
over the earlier ones, however, under what physical conditions this model can apply are not appar-
ent [cf. Shen and Todorovic, 1971]. Subsequent investigators have commented on the limitation of
employing non-homogeneous model to describe transport of sediment particles. The difficulty of
application arises from the facts that the information required to use this model remains impracti-
cally great, and the parameters, A, and A,, are not easy to determine experimentally from available
knowledge [e.g., Hassan et al., 1991; Hung and Shen, 1972].

This work presents first-order approximation techniques for estimating parameters of the non-
homogeneous compound Poisson model. The proposed methodology involves first-order Taylor
expansions of the CDF and numerical solutions to a system of nonlinear equations. An application
example of fine sediment infiltration into a gravel column, viewed as a one-dimensional movement
of sediment in vertical direction, is provided showing the procedures of parameter estimation and
verification. Although Shen-Todorovic model is developed for the movement of bedload particles,
the original idea is so clear that any motion of sediment that is characterized by alternate step and
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rest can be described by this model. Based on a series of laboratory observations, we found that the
movement of sediment particles through the gravel filter is made up of a sequence of alternate steps
and rests. It is therefore rational to use Shen-Todorovic model in the context of sediment movement
through a column filter. The results are shown emphasizing both the validity of the proposed
approximation technique and the non-homogeneity of stochastic parameters.

2 Methodology
2.1 First-order Approximation Technique

The basic idea of this method is to approximate a model involving stochastic parameters by the
first-order Taylor series expansion. In other words, the probability distribution function of the form
in (1) is expanded with respect to a selected temporal or spatial point by a finite difference. As
shown in Appendix A, this is accomplished by introducing first-order Taylor expansion of the inte-
gral intensity function to the forward- or backward-difference expression of (1). Dividing the first-
order expansion of (1) by the original CDF results in a further simplified form. The simplified for-
ward- and backward-expansions are solved as a system to evaluate the model parameters. The sys-
tems of equations used to estimate the temporal and spatial parameters are respectively given as
follows.

1. Estimation of temporal intensity function, A,

F;-i—_.‘\;(xr) — = .

T Rl et 2)
F.r .\I(A‘f) _ v =

CF(x) expla, ()] - [1-5,(1)]

where @, and b,, both varying with ¢, are two unknowns to be solved. Numeric values of F, _,,(x),
F,(x), and F, , ,(x,) are determined from the data measured in the interval [x,, x,]. Since
a,(t) = A (1) - At, the magnitude of A, at the specified time ¢ is theoretically obtainable once «, is
solved. The temporal intensity function, A, is pursued with successive applications of this pro-
cedure on various temporal points.

2. Estimation of spatial intensity function, A\,

F,(x+Ax)

“Fag - el b

F,(x—Ax) 3)
T = expla,(x)] - [1-by(x)]

where a,and b,, both dependent on x, are two unknowns to be solved. Similarly, numeric values
of F,(x—Ax), F,(x),and F, (x + Ax) are determined from the data measured at a specific tem-
poral point #,. Since @,(x) = A, (x) - Ax, the magnitude of A, at the specified location x is also

JOURNAL OF HYDRAULIC RESEARCH, VOL. 37, 1999, NO. 2 215



02:47 2 January 2011

[International Association for Hydro-Environment Engineering and Research] At:

Downloaded By:

obtainable once a, is solved. The spatial intensity function, A,, is likewise pursued with succes-
sive applications of this procedure on various locations.

Both (2) and (3) are systems of nonlinear equations and thus solved numerically by Newton’s
method [Conte and de Boor, 1980]. It should be mentioned, at this point, that the accuracy of this
approximation technique increases as the size of Ar or Ax reduces since the error terms associated
with the first-order Taylor expansions are on the second-order of At or Ax.

2.2 Alternative Approach: Estimating Integral Temporal Intensity Function

Theoretically, one can estimate the temporal intensity function, A,, through the foregoing proce-
dures. However, successive measurements of particle distributions in the interval [x,, x;] at a small
and uniform time increment At are practically inefficient and sometimes physically infeasible.
Besides, when (1) is used to predict the spatial distribution of sediment at a specific time ¢, it is the
integration of A, over [, ¢] rather than A, itself that actually dominates the temporal portion of (1).
The integral temporal intensity function, denoted by A, appears to be a more useful parameter in
the application phase. As shown in Appendix B, the integral temporal intensity function, A, can be
evaluated by

A(t) = —In[F(x()] (4)

in which x; is the starting position where a set of sediment particles is simultaneously released at
time 7,. With equation (4), one would only require the fraction of particles that remain at the initial
position, x;, for various time to estimate the integral temporal intensity function. This eliminates
successive measurements of sediment distribution within a spatial interval at small time increments.
The present study adopts this alternative approach to determine A,. One can then obtain A, by dif-
ferentiating the A, curve.

3 Application example

As an application of the proposed approximation techniques, an example of fine sediment infiltra-
tion into a gravel column is discussed in this section. We use this physical process as an example,
on one hand, because it may be treated as a one-dimensional movement of sediment in the vertical
direction [cf. Sakthivadivel and Einstein, 1970]. On the other hand, sediment intrusion into porous
media and the consequential pore-clogging phenomenon has been an issue of considerable concern
in many natural and technical processes. Common instances, such as the pollution of spawning
gravel substrate, streambed contamination, clogging of filters used for groundwater recharge and
industrial filtration, have been reported in many published works (e.g. Lisle [1989], Jobson and
Carey [1989], Behnke [1969]).

Like many hydraulic/environmental problems associated with the erosion and deposition of sedi-
ment, the process of sediment infiltration and the resulting deposition in a porous matrix is greatly
governed by the patterns of sediment supply. Expectedly, instantaneous and continuous sources of
sediment supply would lead to diversified results in temporal and spatial scales of infiltration proc-
ess. The instantaneous supply of sediment is, generally speaking, a less usual condition in either the
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natural or industrial processes. While many experiments on filtration and particulate transport
through porous media are conducted with continuously supplied sediment [e.g. Sakthivadivel,
1966; Joy et al., 1993], we use an instantaneous input of bulk sediment to demonstrate a straightfor-
ward application of the proposed techniques. This example is instructive in terms of evaluating the
stochastic parameters and investigating their variations.

3.1 Experimental Study

A series of experiments for investigating sediment infiltration into a gravel column are carried out
in the Hydraulics Laboratory, University of California at Berkeley. The experimental setup, shown
in Figure 1, mainly consists of a column filter packed with gravel, a sand container/supplier
installed atop the filter, and a recirculating water supply system with a sedimentation tank used for
effluent treatment. The column filter, with a 25 X 25c¢m? cross section, is made of transparent plastic
for observational purposes. The plastic column filter contains six detachable layers, each 5¢cm in
thickness. By instantaneously unclosing the sand supplier, a simultaneous release of the preloaded
sand to the top of the gravel column is made possible. The valves and flow meter in the recirculat-
ing pipe system allow us to maintain a constant seepage flow through the gravel filter. Temporal
and spatial variations of the sand deposition in the gravel matrix are shown in Figure 2. For each
trial, a predetermined quantity of sand (M;) is released on the gravel bed surface (x,) at an initial
time (,). After a certain period of time for sand infiltration and deposition, flow is terminated and
the water in the filter system is drained. The quantity of sand remains atop the bed surface and those
accumulated within the six filter layers (designated as my, and m, through m, in Figure 2, respec-
tively) are sampled by detaching the plastic column and then physically measured after being oven-
dried and separated with the gravel.

|
A > ’
A: Gravel column filter F: Recirculating tank AR
B: Flow meter G: Pump “:}\
C: Valve controlling outflow  H: Valve controlling inflow ;
D: Outflow pipeline Iz Inflow pipeline
E: Sedimentation basin J: Sand container/supplier E
& H R C
z— 2
F F
(Mot to scale)

Fig. 1. Schematic diagram of experimental setup.

JOURNAL OF HYDRAULIC RESEARCH, VOL.. 37, 1999, NO. 2 217



02:47 2 January 2011

[International Association for Hydro-Environment Engineering and Research] At:

Downloaded By:

Time =t, Time =t

X

X3

Xy

v 'L'. s

Fig. 2. Temporal and spatial variations of sand deposition in the gravel matrix (the darker pattern represents
the larger quantity of sand).

Table I. Summary of testing conditions and measurement results,

Exp. Gravel Sand Sand Flow Rate Runnin
No!.D Type Type Inputkg x107cms/m? Period,gsec. o B *a ’?3 T s e
(umnit: g)

1 A 1C 2 2 120 1638.3 298.5 24.4 2.8 0.9 0.5 0.5

2 A 30 1 1 5 3054 501.4 114.0 389 14.8 42 1.8

3 A 30 1 1 20 252.1 1A 128.6 46.4 174 8.2 2.6

4 A 30 1 1 180 252.0 514.9 126.6 43.0 17.8 8.2 2.6

5 A 30 2 1 10 954.3 639.6 201.0 80.0 459 213 8.7

6 A 30 2 1 30 940.6 641.6 199.8 79.4 40.2 280 14.9

7 A 30 2 1 920 931.6 602.1 198.5 100.7 57.9 30.1 11.3

8 A 30 2 2 60 1047.8 486.5 195.1 93.9 62.5 32.6 18.3

9 A 30 2 2 600 755.0 545.9 233.0 123.4 95.1 73.3 45.0
10 A 30 2 2 1200 727.5 4883 261.2 162.3 106.6 T2 47.0
11 A 30 2 2 2400 642.5 584.6 242.8 144.4 120.0 98.8 49.6
12 A 30 2 4 60 695.1 492.0 251.9 160.6 119.4 87.3 50.7
13 A 30 2 6 60 567.7 509.9 253.0 168.9 1353 99.1 51.9
14 A 30 3 1 300 1895.8 676.7 177.0 90.0 50.0 29.8 14.6
15 A 30 4 2 60 2551.0 553.0 306.0 188.3 123.2 73.5 35.9
16 A 60 2 1 240 77.1 425.9 254.2 196.0 195.7 159.5 129.5
17 A 60 2 2 30 65.7 407.2 313.2 264.5 2179 181.5 118.8
18 A 60 2 2 300 41.2 374.2 298.6 2583 221.5 177.4 129.6
19 A 60 2 2 1200 275 381.8 229.3 194.2 174.6 167.1 146.5
20 A 60 2 2 3600 0.0 3493 263.2 192.7 176.1 163.8 128.5
21 A 60 4 2 1200 171.9 420.0 242.6 274.7 248.2 230.1 209.0
22 A 60 8 2 1200 336.4 605.6 411.3 324.5 2833 371.1 393.2
23 A 60 16 2 1200 878.2 789.5 686.0 695.3 549.7 472.9 395.4
24 B 30 2 1 5 1628.4 314.7 223 3.6 1.4 1.0 0.8
25 B 30 2 1 15 1620.6 327.6 21.8 32 1.1 08 0.7
26 B 30 7 i 30 1594.5 3389 20.6 26 09 0.7 0.6
27 B 30 2 1 120 1465.2 443.1 49.5 Tl 25 1.1 0.8
28 B 60 | 1 540 2043 460.0 156.9 86.8 43.8 20.3 6.7
29 B 60 2 1 5 1112.1 5164 154.0 90.4 41.5 259 9.6
30 B 60 2 1 540 998.7 549.4 177.2 107.3 60.2 34.2 13.7
31 B 60 4 1 540 2806.5 576.3 182.5 112.0 95.9 60.0 339
32 B 60 8 1 540 6023.6 576.5 266.6 208.6 217.6 178.9 81.2

Two types of sorted gravel, type A and B, make up the porous media in the filter. Three kinds of
uniformly graded sand, #1C, #30 and #60 (commercial serial numbers), are used as infiltrating par-
ticles. The median grain sizes of these materials are 7.5, 5.8, 0.87, 0.42, and 0.34 millimeters,
respectively. The average porosity of the packed gravel is 0.4; the specific gravity of sand is 2.65.
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In all, a total of 32 trials are performed with various testing conditions. The experimental conditions
include 5 particle-media combinations, the quantities of sand input in the range between lkg and
16kg, and the seepage rates from 1 x 10~} ems/m? (1.5gpm/ft®) to 6 x 10~* cms/m? (9gpm/ft?). The
filtration rates are within the reported range of flow for the operations of artificial groundwater
recharge and the general water treatment [Yim and Sternberg, 1987. ASCE/AWWA, 1990].
A complete list of the testing conditions and the measurement results for all the trials is given in
Table 1. These conditions include 18 combinations of the experimental variables, among which 6
groups of tests contain the temporally sequential data.

3.2 Results and Discussion

For the experimental conditions described herein, the cumulative probability distribution of particle
displacement may be directly determined from the data measured at time ¢, i.e.

"
>om

F(x,) = # where x, = n-Ax,n = 0,1,2,...,6 (5)

I

Given the probability distribution by (5), one can evaluate the intensity funcuuiis A, and A,with (4)
and (3), respectively. The results are presented and discussed in the following.

1. Integral temporal intensity function, A,

For the 6 groups of sequential runs, the values of A, corresponding to various infiltration periods
are calculated with equation (4) and plotted versus the temporal axis. The A, and A, curves for these
experiments are shown in Figure 3, where the string of testing condition, in order, represents the
gravel and sand types, sand input, and seepage flowrate.

4.5
AB0-2-F2
1
oo 10 e 50
EAYY ,’ﬂh 800
30 IS
AU P @
Iy )
B30- 2-F1 M Be0-2-F1 |
P 10 P, <
— A\ A ﬁ,k J\l S —
< 3 i AN
0 S
o %™ @ 6
1.5 Time (sec)

o A30-1=F1

A30-2-F2 4

A30-2-F1

ﬁ B60-2-F1 — vV
= B30-2-F1 ——

08 200 400 600

Time (sec)

Fig. 3. Variations of temporal intensity functions and average rest period with time.
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In view of the variation of A, curves with infiltration time, we see that the magnitude of A, drasti-
cally climbs up from zero to a certain point below 5 within a short period of time and then
approaches to an asymptotic constant with a fairly mild rate of change. Indeed, after this initial
period of active motion, we have observed that most sand particles are captured in the void space
with only individual particles making rare movements. Furthermore, since A, represents the inverse
of average rest period, the average rest period of sediment particles (designated as 1/A, in Figure 3)
at the initial stage is extremely short and grows up to a magnitude of the order between 10° and 10"
seconds within 1 to 2 minutes. Eventually, the average resting time of the infiltrating particles
approaches infinity due to the clogging of pores. This drastic growing of the average rest period, in
our opinion, is mainly attributed to the instantaneous intrusion of the bulk sediment as well as the
significant hindering effect of the accumulated sediment. A continuous passage of sediment-laden
flow through the filter would be anticipated to yield a A, curve with a much milder rate of increase
at the initial period.

2. Spatial intensity function, A,

The magnitudes of A, for the locations x, through x5 can be evaluated, by solving equation (3), with
the measured quantities of m, through m,. As mentioned earlier, the parameter A, is presumed to be
a spatially varying function, hence a series of temporally sequential runs is tied to a unique average
spatial intensity function. Typical results of A, and the best-fit curves, for the first two tests (A1C-2-
F2 and A30-1-F1), are shown in Figure 4 to illustrate their variations. It is found that A, varies
exponentially with respect to the depth x, i.e.

AlC-2-F2
A2 (x)=(0.62)-exp(-0.24m,1
|

1500

—_
E —
v E
T~ [¥)
— td
—

o~

s
™~ —_—
< —

Fig. 4. Variations of spatial intensity function and average step length with depth.

Ay(x) = Ay~ exp(—kx) (6)
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where A, and k are coefficients of the regression curve. The fitting coefficients for all the tests are
listed in Table 2. It has been shown that A, and k are both varying as a function of the physical prop-
erties such as the ratio of gravel to sediment sizes, the amount of sediment introduced, and the see-
page flowrate (Wu, 1993).

Table 2. Coefficients of best-fit A, curves.

Experiment '10_ k
x10~' x107?
Al1C-2-F2 6.2 24.0
A30-1-F1 5.7 9.6
A30-2-F1 3.2 7.3
A30-2-F2 2.2 39
A30-2-F4 1.9 4.1
A30-2-F6 17 3.3
A30-3-F1 2.8 7.6
A30-4-F2 1.4 3.9
A60-2-F1 2.5 4.3
A60-2-F2 2.9 3.7
A60-4-F2 1.2 32
A60-8-F2 0.9 3.0
A60-16-F2 0.6 2.8
B30-2-F1 6.0 18.5
B60-1-F1 4.3 5.7
B60-2-F1 2.8 6.5
B60-4-F1 1.7 5.6
B60-8-F1 0.8 2.6

In Figure 4, the descending trend of A, physically indicates that the average size of steps taken by
infiltrating particles (designated as 1/A,) is enlarging with the filter depth. In other words, the move-
ment of sediment is more restricted in the upper portion of the filter than in the lower portion. This
is not surprising since the quantity of sand captured in the filter is decreasing with the depth. The
pore spaces filled with more accumulated sand in the upper layers only allow sediment particles to
make smaller steps. According to the experimental observations of this study and others as well
(e.g., Sakthivadivel, 1966), clogging of the granular filter usually occurs in the first one or two lay-
ers. As the final stage of clogging is reached, the pore spaces are filled with sediment that prevents
further motion of such particles. That, in turn, is the moment when the average resting time of sedi-
ment particles approaches infinity.

3.3 Verification of Results

With the temporal parameter determined by (4) and the spatial intensity function of the form in (6),
we can use (1) to compute the probability distribution of sediment displacement at a specific infil-
tration period. The computed distributions of sediment and the experimental data, again for the first
two tests (A1C-2-F2 and A30-1-F1), are given in Figure 5 where the coincidence of the computed
and experimental results is demonstrated. Especially the agreement for different running periods (5
and 180 sec.) of A30-1-F1 series well implies the underlying assumption of Shen-Todorovic model
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does not lead to significant errors. That is to say, the temporally varying parameter and the spatially
varying parameter produce a compound effect making the CDF of particle displacement a mathe-
matical representation of the evolution of sediment distribution. In that regard, their simplification
appears to be justified for practical applications.

1.0

<
=~ 09
(T
> 08
=
E 0.7 Experimental data
3 o AIC-2-F2-1205
0 06
= & A30-1-F1-55
g 05 O A30-1-F1-180S
B 04
5 Computed results
E
35 0.3:}‘
O
02 . ; = .
0 5 10 15 20 75 30

Depth, x (cm)

Fig. 5. Comparison of experimental data and computed results of Eq. (1).

4 Summary and conclusions

In this paper, first-order approximation techniques for evaluating the stochastic parameters of a sed-
iment transport model are presented. The temporal and spatial intensity functions of the non-homo-
geneous Poisson model can be estimated through the proposed procedures. A simplified method for
determining the integral temporal intensity function is also provided as an alternative approach.
Experimental study of sediment infiltration into a gravel column is carried out to illustrate the
application of the approximation techniques. The results not only indicate the validity of the pro-
posed methodology, but also imply the non-homogeneity of the model parameters.

Variation of the temporal intensity function with time reveals that the average rest period of moving
particles is increasing with the advancement of time and eventually approaches to infinity at the
final stage of clogging. The exponentially descending trend of the spatial intensity function implies
that the average size of steps taken by moving particles is enlarging with the depth of filter. The
restricted movement of sediment in the upper portion of the filter is attributed to the silting effect
caused by the captured particles. The assumption underlying the non-homogeneous Poisson model,
that the rest period and the step length are respectively time- and space-dependent variables, does
not result in a substantial inaccuracy.

Notations

ay, by, k Functions of 7 (a,(1) = A, (1) - At, by(t) = a,(1) - k(1))

a, by, k; Functions of x (a,(x) = A,(x) - Ax, by(x) = a>(x) - ky(x))

E" Event of making exactly m steps within the period |7, 7]

E"" Event of making exactly n steps in the interval [x, x]

F(x) Probability of particle displacement at time ¢ being less then or equal to x
M, Total sand input
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mg, my,..., M Quantities of sand distributed along the depth of filter

l Time

ly Initial time

X, Distance traveled after making m steps

X Space coordinate, or depth

Xy Coordinate of the gravel bed surface

A, Integral temporal intensity function

A, Integral spatial intensity function

Ay, k Fitting coefficients of A, curve

A Temporal intensity function

Ay Spatial intensity function

At Time increment

Ax Space increment, or depth increment
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APPENDIX A

1. Derivation of Equation (2)

As At is sufficiently small, the second- and higher-order terms of At in either the Taylor series
expansion or polynomials can be neglected. The forward-expansion of A, in its m-th power form
can be simplified as follows:

[A,(t+AD]" = [A,(2) + (A1) - A, (t) + O(A)]"
= [A (1) + (A1) - A (D"
= [A(O]" +m[A(D]" '[(AL) - Ay (1)] + O(AL)
= [A(D]" +m[A,()]" ' [(A1) - Ay (0)]

(AT)

By virtue of (A1), the temporally forward-expansion of ( 1) can be expressed as

F,,a(x) = exp[—A, (1 + At)]exp[—A,(x)] Z Z LA, (H‘m)] [A,(x)]

n!
=exp[—A, ()] - exp[-A,(x)] - exP[—(Af) “A(0)]

oo

[A(D]"[A, (J\’)]H m[A, (I)Jm '(Af) AM(D[A(0)]
PP P> QL]

m! n!

On=m m=0n=m

= exp[—(Ar) - A(1)] '{F,(X) +exp[-A(1)] - exp[-A,(x)] - (A2)

miA A1 (A L) [Asla)T
D) o

n!

m=0n=m

The second term in the braces of (A2) can be rearranged as below:

oo

-1 i
exp[-A,(1)] - exp[-A,(x)] - 2 z m{A (D] (Ar)- A (D) [A(x)]

S -~ m! n!
A m=1 A n
= (A ()] - expl-A ()] - expl-As(0)] - T z[m“){), L
m=ln=m " *
o A m A n
= 1) L (0] - expl-A(D)] - expl-Ay()] - 3, 3, LI IALO]

m=0n=m+1

According to Shen and Todorovic [1971], we have the following:

oo oo

A m A n
expl-A (0] expl-Ay(0)] Y, ¥ LOTIAIT_ 5 iy

m=0n=m+1 m=1

m+|<4‘) P(Eil: )(A4)
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where X, , , is the distance traveled after making m + 1 steps; £, is the event of making exactly m
steps within the period [, 7]. With (A3) and (A4), equation (A2) becomes:

Fiiadx)= CXPI—(N)'%U)]'{F,&H [(Af)'l[(f)]-[ 3, P i =2} P(E:f:'f)} } (A5)

m =1

Dividing (A5) by F(x) yields:

- Y P(X,. <x)-P(E,)
r+ AKX e = z ! . L |m=0
W—CXP[ (A1) - A ()] -3 1+ [(At) - Ay (D)]

) (A6)

Any function dependent on both 7 and x may reduce to a function of single variable  when x is spec-
ified by a value of x;. Hence one can define:

z P(X:l:+! er') : P(E::’)

k(1) = 2= TS (A7)

One can also define a,(f) = (At) - A,(t) for a constant At. Letting b,(t) = a,(f) - k,(t) would transform
(A6) into the first equation of (2).

Similarly, one can obtain the backward equation of (2) by substituting Az with —Az in Egs. (A1),
(A2), (A3), (AS), and (A6).

2. Derivation of Equation (3)

Given the integration of A, over [x,, x], denoted by A,(x), the forward-expansion of A, in its n-th
power form can be simplified as the following for a sufficiently small Ax:

[As(x +A0)]" = [Ay()]" + 1 [A(0)]" ' [(AX) - Ay(x)] (A8)
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Substituting (A8) into the spatially forward-expansion of (1) leads to

[A, (F)] [A,(x+Ax)]"
n!

F(x+Ax) = exp[-A,(1)] - exp[-A,(x + Ax)] - z Z

m=0n=m

= exp[-A,(1)] - exp[-Ay(x)] - exp[—(Ax)- Ay(x)]

{Z E[A (D1 [A(0)]" Z Z[A(r)} n-[A(x)]" '(Ax) - Mn}

n! m! n!

m=0n=m m=0n=m

= exp[—(Ax) - Ay (x)] - {F,(,r) +exp[—A,(?)] - exp[—As(x)] -

2 z n!

m=0uw=m

[A, (r)l”’n [A,(x)]" '(Ax)- xm} (A9)

By rearranging the second term in the braces of (A9), one can obtain the following:

[A()]" 1 [AS(x)]" ' (Ax)-As(x)

m! n!

expl[—A, ()] - exp[-Ay(x)] - Z Z

= [(Ax) - Ay(x)] - eXp[—A|(f)l - exp[—A,(x)]

=3 o

[A(D]" @ n-[Ay(x)]" [A(D]" A ()]
{ 0! z n! z z’ m! (n—=1) }

m=1n=m (A10)
A i o S5 i
E [(A«r)-?&:(x‘)l-{ewl AD)]- expl-Aq(x)] - LAOT 5 [Ax()
% X1 TA,
Fexpl-A,(]-expl-Ao(]- 3, ¥ L] ,f;‘ }
m=\ln=m-—1 * -
Again, according to the definition given by Shen and Todorovic [1971], we know
A ()]
expl-Ay(0)] - expl—Ay(n)] - LD 3 LI
P(Ey)- Y P(ES") = P(Ey")
s (Al11)

o oo

(A )] [A0)]

m! n!

exp[-A (0] - exp[-Ay (0] Y, Y

m=in=m-I|

2 P(X, <x)-P(E.

m=1
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where E," is the event of making exactly n steps in the interval [x,, x]. Given (A10) and (A11), one
can divide (A9) by F (x) to obtain

F(x+Ax) _ _ wo AL ] e
_TF_,(T)-_-_CXP[ (Ax)- Ay (x)] -4 1+ [(Ax) - Ay(x)]
(A12)
Toa ! P Xm _— P Er::
PE™") ,,,z:“| ( 1S x) - P )
Fi(x) Fi(x)

At any specific time 7, a function of both 7 and x may reduce to a function depending only on x. A
single-variable function can be defined as the following:

w3 P(X,_ Sx)-PEY")
P(EU )+m:I (Al?)
F, (%) F,(x) ‘

ky(x) =

For a constant Ax, one can define a,(x) = (Ax) - A,(x) and b,(x) = a,(x) - k,(x) to transform (A12) into
the first equation of (3).

Similarly, one can obtain the second equation of (3) by substituting the forward-increment Ax with
the backward-increment (—Ax) in Egs. (A8), (A9), (A10), and (A12).

APPENDIX B
Given the fact that the integration of A, over [x,, x] is zero, one can simplify equation (1) as the fol-
lowing by setting x = x;:

[A(D)]"(0)"

m! n!

F/(x)) = exp[-A(1)] - exp(0) - Z 2

m=0n=m

f\ n f\l 1 " o }\ 2 0 "
expl-A 0] (1| 3 0(:)] (S!) 3! 1(;”%+2[ g:)]%J’} (B1)

n=1( =" =2

]

I

exp[—A,(1)] -

l n! n! n!
n=1 n=1 n=2

" m]E(oy’ [Al(r)l Z(m” }

Il

exp[-A(1)]

which is, in fact, an equivalent expression of equation (4).
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