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Abstract: A Bayesian framework incorporating Markov chain Monte Carlo (MCMC) for updating the parameters of a sediment
entrainment model is presented. Three subjects were pursued in this study. First, sensitivity analyses were performed via univariate
MCMC. The results reveal that the posteriors resulting from two- and three-chain MCMC were not significantly different; two-chain
MCMC converged faster than three chains. The proposal scale factor significantly affects the rate of convergence, but not the posteriors.
The sampler outputs resulting from informed priors converged faster than those resulting from uninformed priors. The correlation
coefficient of the Gram—Charlier (GC) probability density function (PDF) is a physical constraint imposed on MCMC in which a higher
correlation would slow the rate of convergence. The results also indicate that the parameter uncertainty is reduced with increasing number
of input data. Second, multivariate MCMC were carried out to simultaneously update the velocity coefficient C and the statistical
moments of the GC PDF. For fully rough flows, the distribution of C was significantly modified via multivariate MCMC. However, for
transitional regimes the posterior values of C resulting from univariate and multivariate MCMC were not significantly different. For both
rough and transitional regimes, the differences between the prior and posterior distributions of the statistical moments were limited. Third,
the practical effect of updated parameters on the prediction of entrainment probabilities was demonstrated. With all the parameters
updated, the sediment entrainment model was able to compute more accurately and realistically the entrainment probabilities. The present

work offers an alternative approach to estimating the hydraulic parameters not easily observed.
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Introduction

The Markov chain Monte Carlo (MCMC) method generates ran-
dom samples that can be used to evaluate marginal and condi-
tional probabilities. The underlying principle of MCMC is simple:
to sample randomly from a “target” probability distribution, then
design a Markov chain whose long-time equilibrium (or station-
ary state) follows that distribution, run it for a time long enough
to be confident that an approximate equilibrium has been attained,
then record the state of the Markov chain as an approximate draw
from the equilibrium. The MCMC method was first introduced by
statistical physicists (Metropolis et al. 1953) using a symmetric
Markov chain. Over the last two decades MCMC has become
increasingly popular, primarily attributed to the contribution of
Gelfand and Smith (1990) by showing the effective applications
of MCMC in Bayesian problems. A vast literature demonstrates
the power of MCMC in dealing with problems ranging from
image processing to geophysics to bioinformatics. Among the ex-
cellent reviews of MCMC are the article by Spall (2003) and the
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books devoted to MCMC (Gilks et al. 1996; Gelman et al. 2004;
Gamerman and Lopes 2006).

In hydrology, MCMC is also frequently employed to deal with
the Bayesian problems (e.g., Balakrishnan et al. 2003; Marshall et
al. 2004; Reis and Stedinger 2005; Renard et al. 2006). To date,
applications of MCMC in the hydraulic engineering are surpris-
ingly sparse. This probably stems from the fact that Bayesian
inference exhibits little resemblance to the deterministic ap-
proaches conventionally adopted by hydraulic engineers for the
task of parameter estimation. Moreover, the MCMC method and
its applications in hydraulics have been rarely demonstrated.

This work presents a Bayesian framework in which we employ
MCMC to update the parameters of a sediment entrainment
model by incorporating the data of entrainment probabilities. The
posterior distributions of the parameters are applied in prediction
of sediment entrainment, and the practical improvements result-
ing from this study are demonstrated. The work presented here
resembles the “inverse modeling approach” used in the area of
subsurface hydrology for refining uncertain parameters with ad-
ditional input information, and offers an alternative approach to
estimating the hydraulic parameters that are not easily observed.

Overview of Sediment Entrainment Model

A sediment entrainment model that incorporated the near-bed co-
herent flow structures was proposed by Wu and Yang (2004a) and
later applied to investigate the role of turbulent bursting in en-
trainment of mixed-size sediment (Wu and Jiang 2007). Here,
only the key parts of this model are summarized, and readers are
referred to the original work for details. The model consists of
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two major components, i.e., the probabilistic and mechanistic
submodels. The former mainly deals with the near-bed coherent
flow structures that were characterized by a third-order Gram—
Charlier (GC) joint probability density function (PDF) of stream-
wise and vertical turbulent fluctuations. Random samples are
drawn from the GC joint PDF to construct the pairs of instanta-
neous velocities approaching a sediment particle. The velocity
pairs are then used in the mechanistic submodel to evaluate the
instantaneous hydrodynamic forces acting on a particle of the ith
size fraction randomly configured on the mixed-size sediment bed
and the corresponding probabilities of entrainment. The procedure
is implemented over the full range of each random variable to
estimate the expected value of entrainment probability for the ith
size fraction, denoted as P7;. The input variables include bed
shear stress T, grain size D; and proportion p; of the ith fraction
(i=1,...,n;n=total number of size fractions).

In the probabilistic submodel, the third-order GC joint PDF of
two-dimensional turbulent fluctuations is given by

g(UV)=d(U.V

0%, (1+Li+L,+Ly+Ly,) (1)

in which U=u'/o, and V=v'/c,=normalized velocity fluctua-
tions in the streamwise and vertical directions, respectively,
where ¢, and o,=standard deviations of u’' and v’, respectively;
&(U,V|0,%,,)=bivariate standard normal (SN) joint PDF with
zero mean vector 0=[0,0]” and covariance matrix 3y, which is
expressed by
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where Rw=u’_v’/ o,0,=correlation coefficient. The near-bed val-
ues of R, typically range between —0.4 and —0.5 (Pope 2000; Wu
and Yang 2004a). A value of R,,=—0.45 was used herein; two
alternative values, —0.4 and —0.5, were also used for sensitivity
analyses. The SN joint PDF of U and V can be written as
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The third-order expansion of Hermite polynomials, (1+L;+L,
+L;+L,), is defined by
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where R, =R, U-V; R,=R,,V-U; S,=u""/co;; and S,=v""/0,
=skewness factors; and M,,=u'*v'/c?> 2

o, and M,=u'v'*/o,0,
=diffusion factors. In this submodel, the parameter values to be
specified include the second- and third-order statistical moments,
ie., 0, 0y S, Sy, My, and M,,, which are briefly described in
the following.

Based on an analysis of the compiled data, Wu and Yang
(2004a) recommended that for transitional flows (k! <<70),

o,/u,=-0.187 In(k})+2.93 and S§,=0.102In(k}), where &}
=roughness Reynolds number=u k,/v; u,= \e""ro/pzbed shear
velocity; p=density of fluid; k,=2Ds,; Dsy=median size; and
v=kinematic viscosity. For fully rough flows (kf=70), constant
values of o,/u,=2.1 and S,=0.43 were observed. Wu and Jiang
(2007) reanalyzed the compiled data set and further suggested
that o,/u,=0.99, §,=-0.01, M,;=-0.07, and M,=0.12 for both
transitional and fully rough flows. The limited data available for
these analyses give rise to uncertainties in the parameter values,
and we seek to update these parameters using a Bayesian MCMC
approach.

In the mechanistic submodel, characterization of the near-bed
velocity profile is crucial for evaluations of hydrodynamic forces
and the resulting probabilities of entrainment. The structure of the
near-bed region can be characterized by a roughness layer in the
close proximity of the bed surface and a logarithmic layer above
the roughness layer (Nikora et al. 2001). In the roughness layer,
the double-averaged (i.e., time and spatially averaged) streamwise
velocity is described by a linear profile, i.e.

5 _ (%) for y <® (5)

Uy

where u(y)=time-averaged streamwise velocity at a height y from
the origin, which is located at a distance 0.25Dg, below the mean
bed surface; d=thickness of the roughness layer, & is taken to be
the sand diameter for a uniform sand bed, whereas it is 1.5D5 for
a mixed-size gravel bed. Nikora et al. (2001) suggested that for a
gravel bed the velocity coefficient C is in the range between 5.3
and 5.6, whereas for a sand bed C=38.5. The velocity profile in
the logarithmic layer follows the universal log distribution, which
can be expressed as

1
C+—ln<X) for y > 9 (6)
u K )

%

where k=von Karman constant=0.4. As shown in Egs. (5) and
(6), the coefficient C affects the mean velocity profiles in both the
roughness and logarithmic layers, to which a protruding particle
is exposed. As an instantaneous velocity can be decomposed as a
sum of mean velocity and fluctuation, the instantaneous drag, lift,
and turning moment exerted on a particle would vary sensitively
with the value of C used, which in turn affects the probabilities of
entrainment. By incorporating the compiled data, we seek to up-
date model parameters via a Bayesian framework in which
MCMC is used as a sampler to derive posterior distributions.

Markov Chain Monte Carlo

In the context of Bayesian inference, the posterior distribution of
model parameters that incorporates both the prior knowledge and
additional information is given by

P(0)P(d|0)

P(6ld) = [P(0)P(d]0)d0

= P(0)P(d|0) (7)
in which P(0|d)=posterior distribution of model parameters 0
given additional data d; P(@)=prior distribution of @; P(d|0)
=likelihood of d under condition @, where @=parameter vector;
d=m X n matrix of observed data, m=number of observations,
and n=number of data in each observation. It has been demon-
strated (Gilks et al. 1996; Gelman et al. 2004; Gamerman and
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Lopes 2006) that the normalizing constant in the denominator of
Eq. (7) can be discarded such that a tractable relation of propor-
tionality (without having to integrate over the parameter domains)
would be obtained. In general, evaluation of the posterior distri-
bution P(0]d) is not straightforward because it is usually not
possible to sample from the likelihood. However, it is possible to
calculate the likelihood for a given “realization of model param-
eters,” and MCMC exploits this property to generate samples
from the posterior distribution when the chain has converged. A
sufficiently large number of these samples can be then used as a
good numerical approximation to the target posterior distribution
P(0]d).

Metropolis Algorithm

A Metropolis algorithm using a symmetric proposal distribution
was employed in this study to construct the Markov chain be-
cause of its simplicity and efficiency. The Metropolis algorithm
samples a candidate parameter vector 0, from a symmetric pro-
posal distribution ¢(0,]0,) and then obtains the (¢+1)th realiza-
tion of parameter vector, 0,,, with an acceptance-rejection
procedure. The acceptance—rejection procedure is based on com-
parisons of a random sample { drawn from Uniform(0, 1) with an
acceptance probability a evaluated by

B P(9*|d)Q(0t|0*) B P(O*)P(dw*)
“7 P(0)d)q(0,16) — P(6,)P(d]0,)

(8)

where the proposals are canceled out as ¢(0,]0,)=¢(0,]0,) for
symmetric distributions. The Markov chain so generated would
eventually converge to the target posterior given any form of
proposals, provided that the Markov chain is “ergodic,” which
means that the states of the chain have sufficiently experienced
the whole parameter space (Gilks et al. 1996). To implement the
Metropolis algorithm, the prior P(0,), likelihood P(d|,), pro-
posal ¢(0,.|0,), along with the convergence diagnostics must be
specified, as described in subsequent sections.

Prior Distributions

For the velocity coefficient C, an uninformed (i.e., unbounded
uniform) prior was used. We also used two alternative priors for
sensitivity analyses, which included a normal distribution
N(8.05,3.1) with mean and variance determined from the lower
and upper bounds reported by Nikora et al. (2001), and a posterior
normal PDF N(17.3,5.5) resulting from univariate MCMC and
uninformed prior. For the six statistical moments of the GC PDF,
MCMC simulations were carried out on all parameters in fully
rough flows, but only on four parameters in transitional flows
where o,/u, and S, vary deterministically as a function of k. For
fully rough flows, a multivariate normal PDF N(0| Mpﬂm,zpﬁm)
was used as the prior of the parameters O4=[c,/u,,0,/u,,
SusSy .My . M,]", where o, and X, =prior mean vector and
covariance matrix derived from the compiled data set (Wu and
Yang 2004a; Wu and Jiang 2007), and are given by
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-0.01, -0.07, 0.12]"

(9a)

Mprior = [2.1, 0.99, 043,

0.0021
0.056
0.018
Zprior = 0.054
0.01

0.0026
(9b)

Because the compiled data revealed no significant correlations
among these parameters (Wu and Jiang 2007), they were assumed
independent for simplicity, thus Eq. (9b) was literally a variance
matrix. For transitional flow regimes, the parameter vector and
normal prior were replaced by 0,=[c,/u,,S,,M,,M,]" and
N(O4] priors 2 prior)s in Which pio and X, were modified from
Eq. (9) accordingly.

Likelihood Function

The likelihood P(d|0) is a conditional probability of observing d
given parameters 0. Here, we followed Box (1980) and Rubin
(1984) by assuming that the observed entrainment probabilities
of the ith fraction, ET;, are normally distributed with a mean PT;
and a variance o, where PT;=predicted entrainment probability,
o?=quantifier of model errors, evaluated with the discrepancies
between observed and predicted results. Following Wu and Jiang
(2007) gave an estimate of o>=0.001. Assuming independency
among these distributions leads to

m n

p(d|0) = [T I MET!|PTi(0),07] (10)

k=1 i=1

where k=observation index and n=number of size fractions. It
should be noted that the assumption of independent normal dis-
tributions is reasonable because each of these distributions de-
scribes a relation between observed and predicted results but not
a relation between observations or size fractions. Eq. (10) was
used by Eq. (8) to account for the differences between predicted
and observed entrainment probabilities.

Proposal Distributions

As mentioned earlier, any proposal distribution (also called
candidate-generating, probing, or jumping distribution) will ulti-
mately deliver samples from the target posterior. The rate of con-
vergence, however, depends on the resemblance between proposal
and target distributions. In this study we employed a random-walk
Metropolis algorithm and Gaussian proposals that have good con-
vergence properties (Draper 2006). The proposal distributions of
C can be expressed as ¢(0,,|0,)=N(C,|C,,s?), where s=scale fac-
tor. The scale factor must be specified carefully. A cautious pro-
posal (with a small s) that generates small steps (0,—0,) will
generally have high acceptance rate o, but the chain will converge
slowly. A bold proposal (with a large s) generating large steps will
often propose moves from the body to the tails of the distribution,
giving small values of a, that in turn will prevent a chain from
moving and again result in slow convergence (Gilks et al. 1996).
For the velocity coefficient C, a value of s=0.5 was used. Two
alternative values of s=0.25 and 1.0 were also used for sensiti-
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vity analyses. For the six statistical moments of the GC PDF, the
variance matrix of the proposal was taken to be O.ZEPrior, and the
proposal distribution was given by ¢(0,]0)=N(8 |0,

0.230r). A relation q(0,]0,)=¢(0,-0,) holds for symmetric
proposals, thus the proposals of C and 04 can be rewritten as

N(C,|C,s*) =N(C, - C|0,s?) (11a)

N(BG,*|06,I7O'22pI‘iOI‘) = N(06* - 06,t

0,025 .,)  (11b)

Random samples were drawn from these proposals and used as
candidates to advance the chains subject to the acceptance-
rejection procedure.

Convergence Diagnostics

The purpose of convergence diagnostics is to determine when it is
reasonable to believe that the samples generated by MCMC simu-
lations are representative of the underlying equilibrium distribu-
tion. To assess whether a chain has converged to the stationary
distribution, we employed a widely used diagnostic metric pro-
posed by Brooks and Gelman (1998), who suggested using mul-
tiple chains obtained with overdispersed starting values.
Throughout this study, we used two chains to carry out MCMC
simulations; however, a three-chain MCMC was also performed
for sensitivity analyses. The diagnostic metric is based on the
calculation of potential scale reduction factor (PSRF) R, which is
defined as the ratio between total variance and within-sequence
variance. If convergence is reached, the between-sequence vari-
ance should become negligible, leading to a value of R= 1. Usu-
ally, values of R=<1.1 are considered as acceptable (Gelman et al.
2004). However, for multivariate chains with dimensionality >35,
a convergence criterion R<1.5 has been recommended (Brooks
and Gelman 1998). In this study, the first diagnostic was per-
formed at 500 iterations; thereinafter convergence was diagnosed
every 50 iterations. The convergence was confirmed by checking
if the chains that met the criterion have lasted for at least 500
iterations. The posterior distribution was then obtained by dis-
carding the initial burn-in iterations and using the converged por-
tions. In addition, the autocorrelation function was examined to
see if the autocorrelations within the sampler output was negli-
gible (Smith 2005).

Procedure

The flowchart of the multiple-chain MCMC is shown in Fig. 1,
where the input data and specifications of prior, likelihood, and
proposal were given at the beginning. The first chain was started
at a specified value, which was used by the sediment entrainment
model to compute the probabilities of entrainment (for all ob-
served events and size fractions). A candidate parameter was
drawn from the proposal and again used to compute the probabili-
ties of entrainment. These predicted values and observed data
were used to calculate the acceptance probability « via Eq. (8),
and o was used in the acceptance—rejection procedure moving the
chain to the next state. These steps were repeated first for all
chains and then for iterations. When all chains had advanced to a
point where the convergence was confirmed as described earlier,
the output posterior distribution was obtained using the converged
portions of all chains.

Input: Observed data d
where d=[ET/] for
observation index: k=1,...m
size fraction index: i=1...,.n
v
Specify: Prior distribution P(8)
Likelihood function P(d|9)
Proposal distribution ¢(8.8)

Chain index: j=1

Iteration index: t =0
Specify starting point 8,

Calculate PT/(8,)
for k=1...m
i=1..,n
v
Sample candidate parameters 6,
from q(6.|6;)

v
Calculate PT(8,)
for k=1...m

1 =i
¥
Calculate acceptance probability «
Sample ¢ from Uniform(0, 1)

Obtain 0., by
acceptance-rejection procedure

Jj =Max. no. of chains

Convergence diagnostic

Output:
Posterior distribution P(8|d)

Fig. 1. Flowchart of multiple-chain MCMC simulations

Materials

Two sets of data were compiled and used as the input material for
parameter updating. The first data set included the entrainment
probabilities observed in a gravel-bed flume with grain sizes rang-
ing from 1.68 to 11 mm (Wu and Yang 2004b). Six observations
(Runs C-2—-C-7) were included in this data set (Table 1). The bed
shear stress T, varied between 2.16 and 4.75 Pa; values of k;
ranged from 740 to 1,200, all in rough regimes. The partial trans-
port observed in these runs was reflected by the relatively low
probabilities of entrainment, especially for Runs C-2 and C-4 in
which the values of 7, were smallest. The second set included the
entrainment probabilities observed in four sediment mixtures with
grain sizes ranging between 0.042 and 4.472 mm (Sun and
Donahue 2000). Nine observations were included in this data set
and shown in Table 2, where the entrainment probabilities of the
size fractions between 0.22 and 2.45 mm are summarized. The
bed shear stress 7, covered a range between 0.57 and 1.6 Pa, the
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Table 1. Compiled Data from Gravel-Bed Experiments

Run 7, (Pa) kb D; (mm) p;i (%) ET;
C-2 2.16 740 1.68 1.3
2.59 6.6
3.67 11.8
5.04 10.7
7.78 39.3
11 30.3 0.018
C-3 3.76 1,040 1.68 0.9 0.176
2.59 6.1 0.138
3.67 5.8 0.096
5.04 9.6 0.061
7.78 40.6 0.058
11 37.1
C-4 3.08 940 1.68 0.8
2.59 8.7
3.67 8.2
5.04 8.8 0.021
7.78 39.5
11 33.9
C-5 4.46 1,130 1.68 0.8 0.229
2.59 7.7 0.164
3.67 7.2 0.113
5.04 8.6 0.087
7.78 39.2 0.039
11 36.5 0.033
C-6 4.75 1,200 1.68 0.8 0.306
2.59 94 0.229
3.67 5.7 0.171
5.04 7.6 0.133
7.78 36.2 0.057
11 40.2 0.043
C-7 4.06 1,080 1.68 1.7 0.177
2.59 134 0.144
3.67 11 0.107
5.04 9.7 0.082
7.78 343 0.065
11 29.8 0.055

corresponding values of k! ranged from 26 to 56, all in transi-
tional regimes (5<k!<70). The first data set was used for up-
dating the rough-regime parameters, whereas the second set was
used for updating parameters in transitional regimes.

Results and Discussion

In the first part of this section, the results of univariate MCMC
simulations are presented. The velocity coefficient C was updated
using different numbers of chains, scale factors s, prior distribu-
tions, correlation coefficients R,,, and numbers of input data, and
their effects on the outcomes of MCMC were explored. In the
second part, multivariate MCMC were performed to simulta-
neously update the values of C and six statistical moments of the
GC PDF. The results of univariate and multivariate MCMC were
compared. Last, the effect of applying the updated parameters on
the prediction of entrainment probabilities was demonstrated.
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Sensitivity Analyses

Sensitivity analyses were performed in this section to explore the
effects of chain number, scale factor s, prior distribution, correla-
tion coefficient R,,, and additional input data on the outcomes
of MCMC. Univariate MCMC simulations were carried out
to update the velocity coefficient C, whereas the six statistical
moments of the GC PDF remained constant as given in Eq. (9a).
The gravel-bed data (C-2—-C-7) were used as the pool of input
material.

Number of Chains

Two- and three-chain MCMC were performed to examine
whether using different numbers of chains would result in differ-
ent outcomes. The starting values used in the two-chain MCMC
were 1 and 15 [Fig. 2(b)], whereas an extra starting value of 25
was used in the three-chain MCMC [Fig. 2(a)]. Here, for simplic-
ity, a single set of data (C-5) was used as the input. Chains were
run for sufficiently long to confirm that they had indeed con-
verged. The evolution of R (PSRF) to unity is shown in Fig. 3,
where it is demonstrated that two-chain MCMC reached equilib-
rium after approximately 1,000 iterations, whereas the three
chains required more than 1,500 iterations to be fully mixed. The
faster convergence of two-chain MCMC was also observed in
Fig. 2(b), as compared to the three chains shown in Fig. 2(a). To
further examine the efficient mixing of sampler output, the lag-
autocorrelations for each line of the three chains (Fig. 4) demon-
strate that the autocorrelations within each chain were practically
negligible and confirm that convergence was efficient.

The posterior histograms for each line of the three chains are
shown in Figs. 5(a—c), and the histogram derived from all three
lines is shown in Fig. 5(d), where the corresponding best-fit PDF
are Normal(14.6, 4.8), BetaGeneral(6.0, 2.2, 2.4, 20.6), BetaGen-
eral(5.6, 3.7, 7.5, 22.2), and BetaGeneral(6.6, 3.6, 4.3, 21.9), re-
spectively. These posterior PDF are all plotted in Fig. 5(e) for an
overall comparison. Although the posterior PDF of chain 1 was
less similar to the other two, the three-chain PDF eliminated in-
dividual differences and may well represent the distribution pat-
tern of the entire sampler output. The posterior PDFs of two- and
three-chain MCMC are shown in Fig. 5(f), where the best-fit PDF
resulting from two-chain MCMC, i.e., BetaGeneral(4.2, 3.3, 8.9,
23.4), slightly deviated from the three-chain PDF in the location
of mode (17.3 versus 16.2), but had an identical probability den-
sity (=0.15) at the mode. These results suggest that the outcomes
of two- and three-chain MCMC were, practically speaking, not
significantly different. Thus, throughout this study we use two
chains to perform MCMC.

Scale Factor of Proposal Distribution

Three values of s (i.e., 0.25, 0.5, and 1.0) were used to explore the
influence of scale factor on the outcomes of MCMC. Two-chain
simulations were carried out using an uninformed prior. The sam-
pler outputs are shown in Figs. 2(b—d), with the corresponding
evolutions of PSRF demonstrated in Fig. 3. The sampler output
associated with s=1.0 reached equilibrium after approximately
1,500 iterations, whereas the sampler output associated with
s=0.25 exhibited very slow mixing and the convergence criterion
was almost reached after 3,000 iterations. Both of these sampler
outputs, however, mixed more slowly than the output associated
with s=0.5, which confirmed that a scale factor too cautious or
too bold would result in slow convergence.

The posterior PDF of the sampler outputs associated with
s=0.5 and 1.0 are demonstrated in Fig. 5(f), the functional form
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Table 2. Compiled Data from Experiments with Four Types of Sediment Mixture

Sediment mixture 7o (Pa) k¥
D; (mm) pi (%) ET;
Type 1 0.57 26 0.64 28 0.73 30
0.22 6 0.715 0.753 0.793
0.27 6 0.676 0.719 0.764
0.35 14 0.627 0.674 0.726
0.45 12 0.566 0.619 0.678
0.55 12 0.513 0.57 0.635
0.69 12 0.449 0.51 0.58
0.89 8 0.377 0.44 0.515
1.22 8 0.287 0.35 0.429
1.73 5 0.196 0.253 0.33
245 5 0.12 0.167 0.235
Type 2 1.11 36 0.86 32 1.1 36
0.22 6 0.879 0.831 0.877
0.27 6 0.861 0.808 0.86
0.35 14 0.839 0.776 0.837
0.45 12 0.81 0.736 0.807
0.55 10 0.783 0.700 0.780
0.69 11 0.747 0.653 0.744
0.89 8 0.702 0.595 0.699
1.22 9 0.638 0.516 0.634
1.73 4 0.556 0.42 0.552
245 5 0.464 0.321 0.459
Type 3 1.55 41 1.26 37
0.22 6 0.918 0.895
0.27 6 0.907 0.881
0.35 14 0.892 0.861
0.45 12 0.873 0.837
0.55 4 0.855 0.813
0.69 14 0.832 0.783
0.89 2 0.801 0.744
1.22 9 0.756 0.687
1.73 7 0.696 0.613
2.45 4 0.624 0.527
Type 4 1.6 56
0.22 3 0.906
0.27 8 0.894
0.35 7 0.877
0.45 8 0.855
0.55 5 0.835
0.69 9 0.807
0.89 4 0.773
1.22 9 0.722
1.73 7 0.654
245 11 0.575

of the latter is Logistic(15.8, 1.8). The PDF of the sampler output
associated with s=0.25 is not shown because it had not fully
converged. Practically speaking, the difference between the pos-
terior PDF associated with s=0.5 and 1.0 was not significant, with
their modes located at 17.3 and 15.8, and the corresponding prob-
ability densities being 0.15 and 0.14, respectively. The results
suggest that the scale factor of proposal affects significantly
the rate of convergence, but not so pronouncedly the posterior
distributions.

Prior Distribution

Two alternative priors, i.e., a semiinformed normal prior
N(8.05,3.1) with its mean and variance derived from the reported
lower and upper bounds (Nikora et al. 2001) and a normal poste-
rior N(17.3,5.5) resulting from uninformed prior, were used for
exploring the effect of prior on the outcomes of MCMC. The
sampler outputs resulting from these alternative priors (denoted as
normal prior-1 and prior-2, respectively) are shown in Figs. 2(e
and f), which are to be compared with the output resulting from
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Fig. 2. Sampler outputs of velocity coefficient C resulting from univariate MCMC using (a) three chains, uninformed prior, and proposal scale
factor=0.5; (b) two chains, uninformed prior, and proposal scale factor=0.5; (c) two chains, uninformed prior, and proposal scale factor=1.0; (d)
two chains, uninformed prior, and proposal scale factor=0.25; (e¢) two chains, normal prior N(8.05,3.1), and proposal scale factor=0.5; and (f)
two chains, normal prior N(17.3,5.5), and proposal scale factor=0.5
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Fig. 3. Evolutions of potential scale reduction factor (PSRF) R for
sampler outputs shown in Fig. 2

uninformed prior [Fig. 2(b)]. The results revealed that conver-
gence of sampler outputs was achieved much faster as normal
priors were used. For both of the simulations using normal priors,
equilibrium was reached prior to 500 iterations (Fig. 3). Although
normal prior-1 and prior-2 were different in values of mean and
variance, their output results consistently demonstrated better
convergence than the output resulting from uninformed prior.

The posterior distributions resulting from normal prior-1 and
prior-2 are demonstrated in Fig. 5(f) along with other posteriors
discussed earlier. The posterior PDF resulting from normal
prior-1 and prior-2, i.e., BetaGeneral(11.5, 3.5, -10.0, 16.9) and
BetaGeneral(4.3, 5.2, 10.0, 24.0), were significantly different,
with their modes located at 11.8 and 16.1, and the corresponding
probability densities being 0.14 and 0.17, respectively. It is specu-
lated that the smaller posterior mode resulting from normal
prior-1 was mainly attributed to its smaller prior mode (=8.05),
whereas the greater posterior mode resulting from normal prior-2
was attributable to its greater prior mode (=17.3). Further, the
highest probability density corresponding to the posterior mode
was observed for the outcome resulting from an informed prior
(i.e., normal prior-2). As this informed prior was a posterior of
uninformed prior, the posterior of normal prior-2 was also similar
to those resulting from uninformed priors. However, the highest
probability density corresponding to the posterior mode may
imply that uncertainty reduction was enhanced by incorporating
more prior information.

The results suggest that convergence of sampler outputs is
achieved faster if informed priors are used. The posterior distri-

butions are significantly affected by input priors, and parameter
uncertainty is reduced as informed priors are incorporated into the
MCMC.

Correlation Coefficient of the GC Joint PDF

Three typical values of R, (i.e., —0.4, —0.45, and —0.5) were used
to examine whether the outcomes of MCMC were influenced by
the correlation coefficient of the GC joint PDF. The scale factor
s=0.5 and uninformed prior were used in these simulations. The
sampler outputs resulting from these values of R,, are shown in
Figs. 6(a—c), with the corresponding evolution of PSRF given
in Fig. 6(d). Convergence of the sampler output resulting from
R,,=-0.4 was the fastest (convergence criterion was met prior to
500 iterations), whereas convergence of the sampler output result-
ing from R,,=—0.5 was the slowest (convergence criterion was
met after 2,000 iterations). The results indicate that if streamwise
and vertical fluctuations are more correlated, a greater number of
iterations are required to reach a stationary posterior. Such an
outcome was probably due to the correlation between streamwise
and vertical fluctuations being a constraint imposed on MCMC.
Given a higher R, the values of #’ and v’ would be restricted in
narrower ranges such that a more suitable value of C must be
drawn from the proposal to yield an acceptance probability « that
would allow the chains to move forward.

The posterior distributions of the sampler outputs resulting
from three values of R,, are shown in Fig. 7, where the best-fit
PDF for R,=-04 and -0.5 were Logistic(16.0, 1.2) and
BetaGeneral(8.1, 4.4, 4.9, 22.5), respectively. The results given in
Figs. 6 and 7 revealed that the rate of convergence does not nec-
essarily coincide with the degree of uncertainty reduction. With
an uninformed prior used in these runs, the reduction of parameter
uncertainty may be evaluated with the shape of the posterior. The
posterior PDF resulting from R,,=—0.4 had a highest probability
density (=0.21) corresponding to its mode (=16.0), whereas the
posterior PDF resulting from R,,=-0.45 had a lowest probability
density (=0.15) corresponding to its mode (=17.3). The posterior
PDF resulting from R,,=—0.5 had a probability density of 0.17
corresponding to its mode at 16.8, both the mode and probability
density were between those values associated with R,,=—0.4 and
—0.45. Because R, and C are both physical parameters of the
sediment entrainment model rather than stochastic parameters of
MCMC, we speculate that the outcomes shown in Fig. 7 were
related to the physical setting of the experiment, i.e., for Run C-5
the near-bed values of R,, were probably most dominated by
those close to —0.4 and least dominated by those close to —0.45.

S 1 Chain 1 1 Chain 2 1 Chain 3

= 08 0.8 0.8

© 06 0.6 0.6

g 04 0.4 0.4

[e]

£ 02 0.2 0.2

< o0 0 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Lag Lag Lag

Fig. 4. Lag—autocorrelation plots for the three chains shown in Fig. 2(a)
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Fig. 5. Posterior histograms and best-fit PDFs of the three chains shown in Fig. 2(a) are demonstrated individually and collectively in (a)—(e) for
comparison. Best-fit PDFs of the sampler outputs shown in Fig. 2 are demonstrated in (f) for comparison.

As R, varies as a function of local turbulence and bed character-
istics that is not fully understood at this moment (Wu and Jiang
2007), throughout this study a constant value of R,,=-0.45 was
used, leaving a largest uncertainty in C to be resolved via
multiple-input and multivariate Bayesian updating.

Number of Input Data

Bayesian updating depends crucially on additional data available,
thus the number of input data should have an important influence
on the results of MCMC. To explore this, we used one set of data
(C-5, C-6, or C-7), two sets of data (C-5+C-6, C-5+C-7, or
C-6+C-7), three sets of data (C-5-C-7), and six sets of data (C-
2-C-7) as the inputs to MCMC. The scale factor s=0.5 and un-
informed prior were used in these simulations. The posterior PDF
resulting from different numbers of input data sets are shown in
Fig. 8 and Table 3, with the posterior modes and standard devia-
tions also listed in Table 3. Generally, the posterior PDF were
distributed in much narrower ranges if more than two sets of input

data were used. For the posterior PDF resulting from one set of
input data, the modes ranged between 17.3 and 19.5, with the
standard deviations consistently greater than 2.7. For the posterior
PDF resulting from two data sets, the modes were concentrated in
the range between 17.2 and 18.2, with the standard deviations
reduced to the values less than 2.0. As the number of data sets
increased from 3 to 6, the posterior mode varied slightly from
17.9 to 18.1, with the standard deviation further reduced to 1.4.
These results indicate that the parameter uncertainty reduces with
increasing number of input data. So far, MCMC simulations were
carried out to update a single parameter C. The values of C de-
rived from univariate MCMC were, however, consistently greater
than those reported by previous investigators (e.g., Ligrani and
Moffat 1986; Bandyopadhyay 1987; Bridge and Bennett 1992;
Nikora et al. 2001; Wu and Yang 2004a), which may indicate that
larger C values would be obtained when the other parameters
remain fixed, and also raise the need to perform multivariate
Bayesian updating.
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Fig. 6. Sampler outputs of velocity coefficient C resulting from correlation coefficient R,,,=—0.4,-0.45, and —0.5 are shown in (a)—(c); evolutions

of potential scale reduction factor (PSRF) R are shown in (d)

Multivariate Bayesian Updating

Multivariate MCMC simulations were carried out in this study to
simultaneously update the velocity coefficient C and statistical
moments of the GC joint pdf. To accelerate the rate of conver-
gence, here a normal posterior N(17.3,5.5), derived using unin-
formed prior and single input data set (C-5), was used as the prior
of C (note that this normal PDF was used earlier as an alter-
native prior), and a normal joint PDF was used as the prior of
the statistical moments, with the mean vector and variance ma-
trix specified in Eq. (9). The starting values were taken to
be (prior mean) = (5 X prior standard deviation). For o,/u, and
o,/u,, however, the lower chain was started with (prior
mean)+ (3 X prior standard deviation), such that negative values
could be avoided. The likelihood and proposals were those speci-
fied in Egs. (10) and (11), with s=0.5 used in Eq. (11a). The full
set of gravel-bed data (i.e., C-2-C-7) were used to update the

0.25
Correlation Ruv =-0.40
0.2 4 Correlation Ruv = - 0.50
’ — ——- Correlation Ruv = - 0.45
0.15 4
kS
o
0.1 4
0.05
0 . ; :
0 5 10 15 20 25

Velocity coefficient, C

Fig. 7. Best-fit posterior PDFs of the sampler outputs shown in
Fig. 6
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Fig. 8. Best-fit posterior PDFs of velocity coefficient C resulting
from different input data sets

parameters in rough regimes, whereas the compiled data given in
Table 2 were used to update the parameters in transitional
regimes.

For fully rough flows, the sampler outputs of all seven param-
eters are shown in Fig. 9, with the marginal priors and posteriors
demonstrated in Fig. 10. The functional forms of posterior PDF
are given in Table 4; the prior and posterior standard deviations
are also given for a comparison. The distribution of C was sig-
nificantly modified via multivariate MCMC, with the mode
shifted from 17.3 to 10.8 and standard deviation reduced from
2.345 to 0.815, implying some 65% reduction in uncertainty.
Modifications in the distributions of six statistical moments were,
however, more limited, with the reductions in standard deviation
ranging from 2 to 13%. Two exceptions were observed for S, and
S, whose posterior standard deviations were greater than their
prior values, implying that underestimation of prior uncertainties
was likely to occur if sparse data were available.

For transitional regimes, C varies as a function of k;’, thus the
compiled data sets were used each at a time as the input to
MCMC for updating the parameters associated with each k7. The
posterior modes and standard deviations resulting from multivari-
ate MCMC are shown in Table 5, where the posterior standard
deviations of C resulting from univariate MCMC are given for a
comparison. The posterior modes and 90% confidence intervals of
C resulting from univariate and multivariate MCMC are also
demonstrated in Fig. 11 along with the results of several previous
studies, including those of Ligrani and Moffat (1986), Bandyo-
padhyay (1987), Bridge and Bennett (1992), and Wu and Yang
(2004a). Among these, the first three were derived for transitional

200 400 600 800 1000 1200
Iteration, t

Fig. 9. Sampler outputs of velocity coefficient C and six statistical
moments of the GC PDF resulting from multivariate MCMC using
rough-regime data

flows, and it was suggested that C remains constant in fully rough
flows; the last one was empirically derived from a compiled data
set with k:,' <1,000. As shown, the first three exhibit an increasing
trend of C followed by a decrease within transitional regimes, and
then remain constant in fully rough regimes, whereas the last one
decreases monotonically with k7.

Fig. 11 demonstrates that the rough-regime values of C result-
ing from multivariate MCMC were more consistent with three

Table 3. Posterior Distributions, Modes, and Standard Deviations of Velocity Coefficient Resulting from Univariatt MCMC with Different Numbers of

Input Data Sets

Number of Input data Standard
input data sets sets Posterior PDF Mode deviation
1 C-5 BetaGeneral(4.2, 3.3, 8.9, 23.4) 17.3 2.7
C-6 BetaGeneral(18.7, 4.9, —8.8, 25.7) 19.5 2.8
C-7 BetaGeneral(4.8, 4.5, 8.0, 26.6) 17.7 2.9
2 C-5+C-6 BetaGeneral(2.3, 2.0, 11.9, 21.3) 17.2 2.0
C-5+C-7 BetaGeneral(4.0, 2.3, 10.1, 21.0) 17.8 1.9
C-6+C-7 BetaGeneral(4.2, 4.9, 12.9, 24.7) 18.2 1.9
3 C-5-C-7 BetaGeneral(3.6, 2.6, 12.4, 21.4) 17.9 1.7
C-2-C-7 BetaGeneral(7.9, 3.6, 10.2, 21.1) 18.1 1.4
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Fig. 10. Prior and posterior PDFs of the sampler outputs shown in Fig. 9
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Table 4. Posterior Distributions of Parameters Resulting from Multivariate MCMC and Comparison of Prior and Posterior Standard Deviations (for Fully

Rough Flows)

Standard deviation

Parameter Posterior PDF Prior Posterior (Change®)
C BetaGeneral(10.9, 12.8, 7.1, 15.2) 2.345 0.815 (-65%)
o,lu, BetaGeneral(19.3, 13.8, 1.8, 2.3) 0.046 0.040 (-13%)
o,lu, Weibull(4.2, 0.84) 0.237 0.206 (-13%)
S, Normal(0.40, 0.15) 0.134 0.154 (+15%)
S, BetaGeneral(3.6, 5.4, —0.74, 1.1) 0.232 0.278 (+20%)
My, Normal(-0.090, 0.093) 0.100 0.093 (-7%)
M, Weibull(3.6, 0.18) 0.051 0.050 (-2%)

Percentage change between prior and posterior standard deviations.

previous results, whereas those resulting from univariate MCMC
were much greater. The 90% confidence interval resulting from
multivariate MCMC was 43% smaller than that resulting from
univariate MCMC. For transitional regimes, the discrepancies be-
tween the outcomes of univariate and multivariate MCMC were
not as significant as those for rough regimes, with the reductions
in standard deviations ranging from 8 to 35% (Table 5), implying
that an average of 22% reduction in uncertainty was achieved by
multivariate MCMC. It is also revealed in Fig. 11 that the
transitional-regime posterior modes exhibited a variation trend
similar to those of three previous results, i.e., an initial increasing
trend with k! followed by a decreasing one. However, the varia-
tion trend of the posterior modes was much steeper. For 32 <k
<70, the posterior values of C were consistently greater than
previous results; for 28 <k} <32, the posterior values appeared to
coincide with three previous results; whereas for k: <28, the pos-
terior values were much closer to the result of Wu and Yang
(2004a).

For transitional regimes, the posterior modes and standard de-
viations of the four statistical moments (Table 5) revealed that the
differences between prior and posterior modes were almost neg-

ligible. The changes between prior and posterior standard devia-
tions were also limited, with the average changes ranging
between —4 and —11%. Compared to the above-mentioned 22%
reduction in the uncertainty of C, the modifications in the
transitional-regime statistical moments were rather modest, simi-
lar to the situations observed for rough regimes. However, in-
creases in the posterior standard deviations were observed
sporadically, which again could be attributed to the sparse data
available for estimating the prior uncertainties.

Application to Prediction of Entrainment Probabilities

In this section, the updated parameters were applied in the sedi-
ment entrainment model to demonstrate their practical effect on
the prediction of entrainment probabilities. To this end, the modes
of the prior and posterior distributions were used separately as the
parameter values for numerical simulations. For the coefficient C,
the mode of the normal prior N(8.05,3.1) was used as the prior
parameter, whereas the posterior modes resulting from multivari-
ate MCMC (see Fig. 11) were used as the posterior parameters for
different values of k}. For the statistical moments of the GC joint

Table 5. Posterior Modes and Standard Deviations of Parameters Resulting from Multivariate MCMC (for Transitional Flows)

Posterior for k=

Parameter Prior 26 28 30 32 36 37 41 56

C Std. Dev* 0.773 1.007 0.839 1.071 1.203 2.053 3.048 1.224
Std. Dev® 0.636 0.657 0.588 0.789 0.830 1.805 2.669 1.124
(Change®) (-18%) (-35%) (-30%) (-26%) (-31%) (-12%) (-12%) (-8%)

o,/u, Mode 0.99 0.97 0.94 0.97 1.05 1.04 0.97 1.04 0.96
Std. dev. 0.237 0.189 0.240 0.168 0.282 0.280 0.204 0.237 0.213
(Changed) (-20%) (+1%) (-29%) (+19%) (+18%) (-14%) (0%) (-10%)

S, Mode -0.01 -0.01 0.00 -0.01 0.01 -0.01 0.00 0.00 0.00
Std. dev. 0.233 0.222 0.219 0.221 0.191 0.183 0.283 0.196 0.225
(Changed) (=5%) (-6%) (=5%) (-18%) (-21%) (+21%) (-16%) (-3%)

My, Mode -0.07 -0.07 -0.08 -0.06 -0.13 -0.08 -0.05 -0.07 -0.09
Std. dev. 0.100 0.090 0.089 0.079 0.091 0.087 0.097 0.096 0.082
(Changed) (-10%) (-11%) (-21%) (-9%) (-13%) (=3%) (=4%) (-18%)

M, Mode 0.12 0.13 0.11 0.11 0.14 0.11 0.11 0.13 0.12
Std. dev. 0.051 0.049 0.059 0.047 0.037 0.055 0.042 0.049 0.039
(Changed) (-4%) (+16%) (-8%) (-27%) (+8%) (-18%) (-4%) (-24%)

Note: Posterior standard deviations of coefficient C resulting from univariate MCMC are also listed for comparison.

Posterior standard deviation resulting from univariate MCMC.

®Posterior standard deviation resulting from multivariate MCMC.

“Percentage change between univariate and multivariate posterior standard deviations.

dPercentage change between prior and posterior standard deviations.
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Fig. 11. Posterior modes and 90% confidence intervals of velocity
coefficient C resulting from univariate and multivariate MCMC.
Compiled data shown in Table 2 were used for updating the constant
value of C in rough regimes (k:>70), whereas compiled data shown
in Table 3 were used for updating the variation trend of C in transi-
tional regimes (k<<70). Symbols and error bars denote the modes
and 90% confidence intervals, respectively. Gray error bars are with
empty symbols, whereas black error bars are with solid symbols.
Results of four previous studies are shown for comparison.

PDF, the modes (or means) given in Eq. (9a) were used as the
prior parameters, whereas the posterior modes shown in Fig. 10
and Table 5 were used as the posterior parameters for rough and
transitional regimes, respectively. Comparisons of the predicted
and observed entrainment probabilities are illustrated in Fig. 12,
where the outcomes resulting from prior and posterior parameters
are demonstrated. The entrainment probabilities predicted using
the posterior parameters were more consistent with the observed
data, whereas the predicted entrainment probabilities associated
with prior parameters were consistently lower than the observed
values. Such a result was probably due to a small value of C
(=8.05) used as the prior parameter, given the fact that the poste-
rior modes of C deviated substantially from this prior value but
the posterior modes of the statistical moments were not signifi-
cantly different from their prior values. With the parameters up-
dated for rough and transitional regimes, the sediment
entrainment model was able to compute more accurately and re-
alistically the entrainment probabilities. The global coefficient of
determination R? increased from 0.76 to 0.91 as the prior param-
eters were replaced by the posterior ones, which implied a 20%
improvement in the accuracy of predictions.

Conclusions

This work presents a Bayesian framework using MCMC to up-
date the parameters of a sediment entrainment model. In the first
part of this paper, univariate MCMC sensitivity analyses were
performed using different numbers of chains, scale factors of pro-
posal, prior distributions, correlation coefficients, and numbers of
input data. The results reveal that the outcomes of two- and three-
chain MCMC were, practically speaking, not significantly differ-
ent. Convergence of two-chain MCMC was, however, faster than
that of three-chain MCMC. The results confirmed that a scale
factor too cautious or too bold would result in slow convergence.
The results also suggested that the scale factor significantly af-
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Fig. 12. Comparisons of observed data and predicted entrainment
probabilities using prior and posterior parameters

fects the rate of convergence but not the posterior distributions.
The sampler outputs of MCMC using informed priors converge
much faster than those using an uninformed prior. The posterior
distributions are significantly influenced by the patterns of priors,
and the reduction of parameter uncertainty is enhanced by in-
formed priors. The correlation coefficient of the GC PDF is a
physical parameter related to the specific setting of experiments,
hence is a physical constraint imposed on MCMC in which a
higher correlation would require a greater number of iterations to
fully mix the chains. Our results indicate that the parameter un-
certainty reduces with increasing number of input data sets. The
posterior PDF are generally distributed in much narrower ranges
if more than two sets of input data are used.

In the second part of this study, multivariate MCMC were
carried out to simultaneously update the velocity coefficient C
and the statistical moments of the GC PDFE. For fully rough re-
gimes, the distributions of C (mean and variance) were signifi-
cantly modified via multivariate MCMC. For transitional regimes,
the differences between the posterior values of C resulting from
univariate and multivariate MCMC were not as significant as
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those for rough regimes. The posterior values of C exhibited a
similar but steeper variation trend compared to those of previous
results. For both rough and transitional regimes, the differences
between the prior and posterior distributions of the statistical mo-
ments were, however, rather limited.

In the last part of this study, the practical effect of updated
parameters on the prediction of entrainment probabilities was
demonstrated. The entrainment probabilities predicted using the
updated parameters were more consistent with the observed val-
ues. With all the parameters updated via MCMC, the sediment
entrainment model was able to compute more accurately and re-
alistically the entrainment probabilities.
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Notation

The following symbols are used in this paper:
C = velocity profile coefficient;
D; grain size of the ith fraction;
D5, median grain size;
d = mXn matrix of observed data;
ET; = observed entrainment probabilities of the ith
size fraction;
g(U,V) = third-order Gram—Charlier joint PDF;
i = size fraction index;
j = chain index;
k = observation index;
k, = equivalent roughness height=2Ds;
ki = roughness Reynolds number=u_k,/v;
L,-L, = third-order expansion of Hermite polynomials
defined in Eq. (4);
M,,,M,, = diffusion factors;
m = number of observations;
n = number of data in each observation (=total
number of size fractions);
P(0) = prior distribution of 0;
P(d|®) = likelihood function of d under condition 0;
P(0]|d) = posterior distribution of @ given dada d;
PT; = expected entrainment probability for the ith
size fraction;
p; = proportion of the ith size fraction;

q(0,]0,) = proposal distribution;
R = potential scale reduction factor (PSRF);

Ru = RuUU_ Vi
R, = u'v'/o,0,=correlation coefficient of the GC
joint PDF;
Rv = Ruvv_ U;
S,,S, = skewness factors;
s = scale factor of proposal distribution;
t = iteration index;
U= uloy,
u',v’ = streamwise and vertical velocity fluctuations,
respectively;

u, = bed shear velocity =\T1,/p;
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u(y) = time-averaged streamwise velocity at a height
y from the origin;
= v'/o,
acceptance probability;
= thickness of the roughness layer;
random sample drawn from Uniform(0, 1);
= von Karman constant=0.4;
Mprior = prior mean vector of O4;
v = kinematic viscosity of fluid;
0 = parameter vector;
0, = tth realization of parameter vector;
0. = candidate parameter vector;
0, = parameters of the GC PDF
=[O-u/u*’0-v/u>:<’Su9SU’M21’M12]T;
p = density of fluid;
Yy = covariance matrix;
Eprior = prior covariance matrix of @g;
0,,0, = standard deviations of u' and v';
o2 = variance quantifying model errors; and
To = bed shear stress.
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