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[1] In this study we investigate forced bars that form in a channel with periodic width
variations. A depth-averaged two-dimensional (2-D) model incorporating a simplified
correction for the helical flows induced by streamline curvature is used to obtain analytical
solution of bed deformation. Flume experiments are conducted to verify the model results.
With the correction included, the 2-D model will be comparable to the 3-D model.
Because the no-slip condition is relaxed at the sidewalls, the model gives distorted results
in the near-bank region, particularly at narrow sections, but the bed topography is
satisfactory for the major part of the channel. The forced bars are classified into four types
according to the locations of peak deformations. Transition from one type to another is
controlled mainly by the aspect ratio b. Increasing the value of b exhibits sequentially
the purely central bars (mode 1), transverse bars (central mode 1), side bars, and transverse
bars (central mode 2). The analytical solution is used to derive a criterion for central
bar formation, which implies a condition required for incipient bifurcation. Given the bank
profile, flow, and sediment conditions, the central bars of mode 1 would develop for
b < bc1 (a lower critical value), the central bars of mode 2 would develop for b > bc2 (an
upper critical value), whereas side bars would form for bc1 < b < bc2. Such criteria for
formation of different bar patterns are necessary but not sufficient conditions for
establishing stable regimes.

Citation: Wu, F.-C., and T.-H. Yeh (2005), Forced bars induced by variations of channel width: Implications for incipient

bifurcation, J. Geophys. Res., 110, F02009, doi:10.1029/2004JF000160.

1. Introduction

[2] Variations of channel width constitute a typical char-
acteristic of natural river planforms, which may manifest a
certain degree of regularity. In straight channels, width
variations may arise from bank erosion induced by bar
development. In meandering channels, width variations
follow curvature variations. In braided rivers, a network
of interlaced channels display considerable variations in
width, both of the individual channel segments and of the
whole channel ensemble [Tubino et al., 1999; Repetto et al.,
2002]. The geomorphic processes of alluvial channels are
essentially governed by the interaction between free and
forced bed forms. The former, typically in a pattern of
migrating alternate bars, spontaneously develop in the
channel as a result of an inherent instability of the flow-
sediment system [Callander, 1969, 1978; Colombini et al.,
1987]. The latter, typically in the form of steady (or
stationary) bars, are induced by forcing effects such as
channel curvature and width variations [Seminara and
Tubino, 1989; Repetto et al., 2002]. Under a sufficiently

strong forcing effect, it has been observed in many cases that
migrating free bars would be suppressed [e.g., Kinoshita and
Miwa, 1974; Tubino and Seminara, 1990; Garcı́a and Niño,
1993], leading to a steady bed configuration that in turn may
affect the planimetric channel evolution.
[3] The forcing effect of channel curvature and formation

of point bars have been extensively investigated over the last
three decades [e.g., Kikkawa et al., 1976; Ikeda and
Nishimura, 1985; Seminara and Tubino, 1989; Parker and
Johannesson, 1989;Whiting andDietrich, 1993; Seminara et
al., 2001, and references therein], primarily due to its natural
association with the development of river meanders. In
contrast, the forcing effect of width variations has received
much less attention. Existing predictive models of river
morphodynamics have almost entirely depended upon the
assumption of constant width, except a few such as that
developed by Darby et al. [2002]. Two recent studies con-
ducted by Bittner [1994] and Repetto [2000] using laboratory
channels with periodic width variations have demonstrated
significant differences in bed topography as compared to the
results observed in channels with constant width. Under
stable regimes (i.e., in the absence of alternate bars), the
steady bed profiles that developed in their channels consist of
a consistent longitudinal deformation pattern with the depo-
sition and scour occurring at the wide and narrow sections,
respectively. The transverse bed configurations at the wide
sections, however, were not consistent in all runs, they
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displayed a spatial structure of side bars in the experiments of
Bittner [1994]while according to the description ofRepetto et
al. [2002] either central or side bars may form, depending on
the wave number of width variations. However, formation of
different forced bars under their prescribed conditions has
only been numerically demonstrated by Repetto et al. [2002]
and thus remains to be verified experimentally. Repetto et al.
[2002] claimed that generation of a central bar in a wide
section pushes the thread of high velocity toward the banks,
leading to an enhancement of width perturbation and thus a
bifurcation of the channel. Accordingly, they used the longi-
tudinal excess velocity at the banks calculated with three-
dimensional (3-D) model as a criterion for predicting bank
erosion (or planimetric instability). A drawback of this
approach arises from the relaxed no-slip condition at the
sidewalls, thus predictions of incipient bifurcation based on
the distorted velocities in the near-bank region could lead to
erroneous results especially for narrow channels in which the
no-slip effect becomes significant.
[4] In this study we investigate the conditions under

which different types of forced bars may form in channels
with periodic width variations. A 2-D depth-averaged model
of flow and bed topography is adopted for solving analyt-
ically the forced bed configuration. To accommodate the
3-D nature of the flow field, we use an approximate
approach to incorporate the effect on transverse bed shear
stress of the secondary helical flow induced by streamline
curvature. An experimental study is conducted to provide a
test of the model results. The forced bed forms are then
classified into four types of bar pattern according to their
geometric characteristics. The analytical solution is further
used to establish the criteria for central bar formation, which
implies a condition required for incipient bifurcation. The
approach demonstrates the merit of using the resulting bed
form as a criterion for predicting planimetric instability.

2. Previous Studies

[5] Bittner [1994] was perhaps the first to investigate
theoretically and experimentally the equilibrium bed defor-
mations induced by the forcing effect of width variations. In
Bittner’s work, a 2-D model was proposed and a linearized
solution of flow and bed topography was obtained follow-
ing the work of Blondeaux and Seminara [1985] and
Colombini et al. [1987]. On the basis of Bittner’s work,
Repetto et al. [2002] also presented a 2-D model and a
similar linear solution. The only difference between these
two models is the formula used to predict bed load intensity.

The Engelund-Hansen formula was used by Bittner [1994],
but the bed load formula of Parker [1990] was employed by
Repetto et al. [2002]. The effects of depth-averaged sec-
ondary flow and local bed slope on the direction of bed load
motion were considered by both models (Table 1). However,
these models did not account for the effect of helical flow
induced by streamline curvature, thus were unable to predict
any significant transverse bed deformation.
[6] To overcome this shortcoming, Repetto et al. [2002]

developed a full 3-Dmodel, inwhich the governing equations
and boundary conditions were linearized into a sequence of
ordinary differential equations, and a shooting procedure and
fourth-order Runge-Kutta scheme was used to obtain a
numerical solution. The helical flows induced by streamline
curvature and convective acceleration were both accounted
for in the 3-D model. Repetto et al. [2002] noticed that the
novel feature associated with the 3-D model was the appear-
ance of a transverse bed deformation, and went on to correct
the 2-D model by incorporating the effect of helical flow. It
was found that their corrected 2-D model could suitably
describe the observed transverse variation of bed profile. In
addition, the resulting phase shift and amplitude of flow and
bed variables were comparable to those predicted by the 3-D
model. However, the correction coefficient k in their modified
2-D model has relied on the 3-D solution. In this paper, we
present an approximate approach that can be directly used to
take into account the effect of local streamline curvatureCs on
bed load motion without solving the 3-D problem (section
3.1.2). Hereinafter the corrected 2-D models of Repetto et al.
[2002] and the authors are referred to as 2-D-k and 2-D-Cs

models, respectively. A summary of the models discussed
here is provided in Table 1.

3. Theory

[7] The formulation of the problem and the linearized
solution (sections 3.1.1 and 3.2) follow closely the work of
Bittner [1994] and Repetto et al. [2002], while in section
3.1.2 we present an approximate approach to account for the
helical flow effect induced by streamline curvature.

3.1. Depth-Averaged Two-Dimensional Model

3.1.1. Formulation of Problem
[8] Consider a straight channel with average width 2B*0

over which periodic variations are superimposed (Figure 1).
The sidewalls of the channel are described by

y* ¼ �b* ¼ �B0* 1þ A cos lb*x*ð Þ½ �; ð1Þ

Table 1. Available Models for Flow and Bed Topography in Channels With Periodic Width Variations

Source Model Boundary Conditions Bed Load Formula
Incorporated Effects on Direction

of Bed Load Motion

Bittner [1994] 2-D no penetration of flow and sediment at the banks Engelund-Hansen secondary flow (depth-averaged velocity);
local bed slope

Repetto et al. [2002] 2-D no penetration of flow and sediment at the banks Parker [1990] secondary flow (depth-averaged velocity);
local bed slope

3-D no slip at the bed; no penetration of flow and
sediment at the banks; kinematic and dynamic
conditions at the free surface

Parker [1990] secondary flow (streamline curvature,
convective acceleration); local bed slope

2-D-k no penetration of flow and sediment at the banks Parker [1990] secondary flow (streamline curvature,
depth-averaged velocity); local bed slope

This study 2-D-Cs no penetration of flow and sediment at the banks Meyer-Peter and
Müller

secondary flow (streamline curvature,
depth-averaged velocity); local bed slope
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where x* and y* are the longitudinal and transverse
coordinates (hereinafter the superscript asterisks denote
dimensional variables), b* is the local half-width of the
channel, A is a dimensionless small amplitude of width
variations, l*b is the wave number of width variations
defined by 2p/L*b, in which L*b is the wavelength of width
variations. The physical domain is stretched into a rectangle
by normalizing the transverse coordinate y* with the local
width b*, i.e.,

y ¼ y*=b* x*ð Þ; ð2Þ

so that y ranges from �1 to 1. Furthermore, the following
dimensionless variables are defined:

x; bð Þ ¼ x*; b*ð Þ=B0*; ð3aÞ

U ;Vð Þ ¼ U*;V*ð Þ=U0*; ð3bÞ

H ;Dð Þ ¼ H*;D*ð Þ=D0*; ð3cÞ

lb ¼ lb*B0*; ð3dÞ

tx; ty
� �

¼ tx*; ty*
� �

=rU0*
2; ð3eÞ

qx; qy
� �

¼ qx*; qy*
� �

=ds*
ffiffiffiffiffiffiffiffiffiffi
Rgds*

p
; ð3f Þ

where (U*, V*) is the velocity vector; H* and D* are water
level and depth, respectively; U*0 and D*0 are average
velocity and depth of a reference uniform flow in the
channel with constant width 2B*0, for given water discharge,
slope, and grain size; (t*x, t*y) is the bed shear stress vector;
(q*x, q*y) is the sediment transport vector per unit width; d*s is
the sediment diameter; R = (rs � r)/r, where rs and r are
sediment and water densities, respectively; g is the
gravitational acceleration.

[9] To look for the steady configuration induced by width
variations, time derivatives are neglected in the depth-
averaged 2-D flow equations (i.e., continuity equation, lon-
gitudinal and transverse momentum equations) and sediment
continuity equation. With equations (2) and (3), flow and
sediment equations take the following dimensionless form:

b
@ UDð Þ
@x

þ @ VDð Þ
@y

� y
@b

@x

@ UDð Þ
@y

¼ 0; ð4aÞ

bU
@U

@x
þ V

@U

@y
þ b

F2
0

@H

@x
þ b

btx
D

� y
@b

@x
U
@U

@y
� y

F2
0

@b

@x

@H

@y
¼ 0;

ð4bÞ

bU
@V

@x
þ V

@V

@y
þ 1

F2
0

@H

@y
þ b

bty
D

� y
@b

@x
U
@V

@y
¼ 0; ð4cÞ

b
@qx
@x

þ @qy
@y

� y
@b

@x

@qx
@y

¼ 0; ð4dÞ

where b is the average aspect (or width to depth) ratio,
defined by B*0/D*0; F0 is the Froude number of the reference
uniform flow, defined as U*0/

ffiffiffiffiffiffiffiffiffi
gD0*

p
. Boundary conditions

are given to impose no penetration of fluid and sediment at
the banks, which can be expressed in the dimensionless
form as follows:

�U
@b

@x
� V ¼ 0 at y ¼ �1 ð5aÞ

�qx
@b

@x
� qy ¼ 0 at y ¼ �1: ð5bÞ

The effect of width variations is felt through the dependence
on the shape of the banks embodied in the term @b/@x. It is
emphasized here that the no-slip condition should be also

Figure 1. Definition sketch of channel geometry and notations. Regions 1 and 2 are the areas in the
channel covering a 1/4 wavelength immediately downstream and upstream of the widest sections,
respectively.
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imposed on the sidewalls. However, considering both no-
penetration and no-slip conditions could result in much
more complication as no appropriate distributions of the
variables could be assigned to satisfy both conditions,
especially for the drastic spatial variation near the sidewalls
due to the no-slip condition. Here we follow the work of
Bittner [1994] and Repetto et al. [2002] by relaxing the no-
slip boundary condition. Such a simplified treatment is
acceptable for studying the bed topography of natural
channels featuring large width ratios in which the no-slip
effect becomes negligible. However, considerable errors
may arise in the near-bank region especially for narrow
channels (see sections 5.1.1 and 6.2).
3.1.2. Correction for Effect of Secondary Helical Flow
[10] The governing equations and boundary conditions

given above are, however, insufficient to describe the flow
and bed topography developing in a channel with periodic
width variations. Many previous studies indicated that
channel curvature, which would give rise to the secondary
helical flow, has major impacts on redistribution of the
primary flow and bed topography [e.g., Leschziner and
Rodi, 1979; Kalkwijk and de Vriend, 1980; de Vriend,
1981; Kitanidis and Kennedy, 1984; Johannesson and
Parker, 1989a, 1989b]. In straight channels with variable
width, although the main axis is nonsinuous, minor stream-
line distortion is perceptible from one section to another. As
a result, the secondary helical flows will be induced by the
streamline curvature and make contributions to the trans-
verse bed deformation. Numerical results of the 3-D model
[Repetto et al., 2002] have clearly demonstrated the exis-
tence of such helical flows.
[11] In this study a depth-averaged 2-D model is adopted,

thus it is unlikely to acquire a 3-D picture of the flow field
including the secondary helical flow. However, since we are
mainly interested in the final bed configuration, the effect of
streamline curvature is incorporated into the bed shear
stress, which would then affect sediment transport and thus
bed topography. Using this approach, we take advantage of
the 2-D model allowing a closed-form solution of flow and
bed topography while still retaining sufficient accuracy,
especially for bed topography. A previous correction
scheme for the effect of helical flow was presented by
Repetto et al. [2002]. However, their correction coefficient
k, a complex parameter accounting for the possibility of a
phase lag between helical flow and bank profile, is deter-
mined from the helical flow distribution obtained through
their 3-D model. Though it may provide a more accurate
correction, the dependence upon the asymptotic 3-D nu-
merical solution violates our intension to seek an analytical
solution of bed deformation that can be directly used to
determine the criteria for incipient bifurcation. Moreover,
we will demonstrate in section 5.1 the utility of our
approach by showing that our 2-D-Cs model gives satisfac-
tory results comparable to those of a 3-D model.
[12] Here we use an approximate approach to account for

the effect of streamline curvature on transverse bed shear
stress. Recall that, to analyze the effect of secondary flow on
bed loadmotion, Blondeaux and Seminara [1985] introduced
an angle c to describe the difference between the local
direction of bed shear stress and x* direction. The angle c
was expressed as a function of two different terms represent-
ing the contributions due to the depth-averaged flow and the

zero-average helical flow driven by channel curvature,
respectively. Herein we replace the effect of channel curva-
ture included in the second term by the effect of streamline
curvature, and revise the expression for c as follows:

sinc ¼ V

U2 þ V 2ð Þ1=2
� a

D

b
Cs; ð6Þ

where a is a constant ranging between 7 and 12 in curved
channels [Engelund, 1974], which is taken to be 17 in this
study, leading to satisfactory agreement with experimental
data (see section 5.1.1); Cs is the dimensionless local
curvature of streamline [Repetto et al., 2002], defined by

Cs ¼
�@ V=Uð Þ=@x

1þ V=Uð Þ2
h i3=2 : ð7Þ

Note that in equation (6) we assume that the correction is in
phase with streamline curvature (i.e., the coefficient a is a
real parameter), thus the possible phase lag is not accounted
for in our 2-D-Cs model. However, as will be shown in
section 5.1.2, the results obtained from the 2-D-Cs model
are comparable to those obtained from the 2-D-k model,
indicating that such a phase lag may not be very significant.
Blondeaux and Seminara [1985] further employed an
expression that relates bed shear stress components with a
friction coefficient Cf, i.e.,

tx; ty
� �

¼ U ;Vð Þ U2 þ V 2
� �1=2

Cf ; ð8Þ

where

C
�1=2
f ¼ 6þ 2:5 ln D=2:5dsð Þ ð9aÞ

ds ¼ ds*=D0*: ð9bÞ

In the presence of secondary helical flows, the transverse
velocity V in equation (8) is revised with equation (6), so
that the transverse component of bed shear stress is
corrected, which is expressed by

tx; ty
� �

¼ U ;Vsð Þ U2 þ V 2
� �1=2

Cf ; ð10Þ

where

Vs ¼ V � aDCs U2 þ V 2
� �1=2

=b: ð11Þ

Since the helical flow is zero-average over a cross section,
Vs only appears in the transverse bed shear stress ty, but not
in the average velocity (U2 + V2)1/2.
3.1.3. Closure Relations
[13] The direction of bed load motion is affected not only

by the secondary flow (angle c), but also by the local bed
slope, which is described by Blondeaux and Seminara
[1985] as follows:

sina ¼ sinc� r

b
ffiffi
q

p @h
@y

; ð12Þ
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where a denotes the angle between average particle path
and x* axis; h = H � D is the dimensionless bed level; r is
an empirical coefficient ranging between 0.3 and 1 [Ikeda,
1982; Talmon et al., 1995], a value of 0.3 is used herein
accounting for the gently varying transverse bed gradient; q
is the local value of dimensionless bed shear stress (Shields
stress), defined by

q ¼ t*= rs � rð Þgds*; ð13Þ

where t* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tx*2þ ty*2

p
, in which (t*x, t*y) are converted

from the values of (tx, ty) obtained from equation (10). The
bed load components are evaluated with a well-established
relation [e.g., Ikeda, 1982; Blondeaux and Seminara, 1985;
Talmon et al., 1995], given by

qx; qy
� �

¼ cosa; sinað ÞF; ð14Þ

where F is the bed load intensity, determined from the
Meyer-Peter and Müller formula [Chien, 1956]:

F ¼ 8 q� qcð Þ3=2; ð15Þ

where qc is the dimensionless critical shear stress, for well-
sorted sediment qc was found to be 
0.04 [e.g., Wilcock,
1998; Wu and Chou, 2003]. With equations (10) and (14),
the unknowns in (4) are reduced to (U, V, H, D), hence the
system of equations is ready to be solved.

3.2. Linear Solution

[14] The perturbation method is employed in search of the
analytical solution to the problem. The essential idea of this
method is to obtain an asymptotic solution by expanding the
variables in question using a small perturbation d. A variable
is broken into an unperturbed mean value and a perturbed
term, such that (b, U, V, H, D, h) can be expressed as

b;U ;V ;H ;D; hð Þ ¼ 1; 1; 0;H0; 1;H0 � 1ð Þ
þ b0;U 0;V 0;H 0;D0; h0ð Þ; ð16Þ

where H0 = H*0/D*0, and H*0 is the local mean water level
corresponding to the reference uniform flow; (b0, U0, V0, H0,
D0, h0) are the perturbed terms. Since the channel width
exhibits a periodic variation, as described by (1), the
perturbed terms can be expanded as

b0;U 0;V 0;H 0;D0; h0ð Þ ¼ d 1;U1;V1;H1;D1; h1ð Þ½ exp ilbxð Þ þ c:c:�
þ O d2

� �
; ð17Þ

where d = A/2, with A already defined in equation (1); (U1,
V1, H1, D1, h1) are complex numbers varying with y only;
exp(ilbx) = cos(lbx) + i sin(lbx); c.c. denotes complex
conjugates. Equation (17) is based on the assumption that
the variation frequencies of the perturbed terms are identical

to that of width variations (but not necessarily in phase).
The assumption of small-amplitude width variations (i.e.,
d� 1) allows us to neglect the higher-order terms O(d2), the
linear solution to the problem thus reads

U ;V ;H ;Dð Þ ¼ 1; 0;H0; 1ð Þ þ d U1;V1;H1;D1ð Þ½ exp ilbxð Þ þ c:c:�:
ð18Þ

Introducing equation (18) into (10) and (14), and then
substituting the resulting expressions for (tx, ty) and (qx, qy)
along with equation (18) into (4a)–(4d), gives a zeroth-
order and a first-order systems of equations.
[15] At O(d0), the solution for the reference uniform flow

is recovered, i.e.,

dH0

dx
¼ �bCf 0 ð19aÞ

qx0 ¼ F0 ¼ 8 q0 � qcð Þ3=2; ð19bÞ

where Cf0 = [6 + 2.5ln(1/2.5ds)]
�2 is the friction coefficient

of the unperturbed reference uniform flow; q0 = t*0/(rs �
r)gd*s, in which t*0 is the bed shear stress corresponding to
the reference uniform flow. At O(d), the following system of
equations is obtained:

a1U1 þ
dV1

dy
þ a1D1 ¼ 0; ð20aÞ

a2U1 þ a3H1 þ a4D1 ¼ 0; ð20bÞ

a5V1 þ a6
dH1

dy
¼ 0; ð20cÞ

a7U1 þ a8
dV1

dy
þ a9

d2 H1 � D1ð Þ
dy2

þ a10D1 ¼ 0; ð20dÞ

where the coefficients a1 
 a10 are defined by

a1 ¼ ilb; a2 ¼ ilb þ 2bCf 0; a3 ¼ ilbF
�2
0 ; a4 ¼ bCf 0 s1 � 1ð Þ;

a5 ¼ ilb þ bCf 0 1þ ailb=bð Þ; a6 ¼ F�2
0 ; a7 ¼ ilbs2;

a8 ¼ 1þ ailb=b; a9 ¼ �r=b
ffiffiffiffi
q0

p
; a10 ¼ ilbs3

and

s1 ¼
1

Cf 0

dCf

dD

� �
D¼1

; s2 ¼
2q0
F0

dF
dq

� �
q¼q0

; s3 ¼ s1s2=2:

The linearized form of the boundary conditions (5a)–(5b) is
given by

V1 ¼ �ilb at y ¼ �1 ð21aÞ

d H1 � D1ð Þ
dy

¼  a
ffiffiffiffi
q0

p

r
l2
b at y ¼ �1: ð21bÞ
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Note that equation (21b), which is different from equation
(2.16b) in the work of Repetto et al. [2002] due to the
correction made in (6), indicates that the transverse bed
slopes at the sidewalls are nonzero values. Equations (20a)–
(20d) and the linearized boundary conditions (21a)–(21b)
can be further simplified as a fourth-order ordinary system
for the variable V1:

G0

d4V1

dy4
þ G1

d2V1

dy2
þ G2V1 ¼ 0; ð22aÞ

V1 ¼ �ilb at y ¼ �1; ð22bÞ

d2V1

dy2
¼ �G3 at y ¼ �1; ð22cÞ

where

G0 ¼ a2a9=a1 a2 � a4ð Þ;

G1 ¼ a8 �
a7

a1
þ a2 a10 � a7ð Þ

a1 a4 � a2ð Þ þ a5a9 a2 � a3 � a4ð Þ
a6 a4 � a2ð Þ ;

G2 ¼ a3a5 a10 � a7ð Þ=a6 a4 � a2ð Þ;

G3 ¼
a1 a4 � a2ð Þ

a2

al2
b

ffiffiffiffi
q0

p

r

� �
þ a21a5 a2 � a3 � a4ð Þ

a2a6
:

The analytical solution to the problem defined by (22) can
be readily obtained, i.e.,

V1 ¼ g1 sinh l1yð Þ þ g2 sinh l2yð Þ; ð23Þ

where

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�G1

G0

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1

G0

� �2

� 4
G2

G0

� �s2
4

3
5

vuuut ;

l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�G1

G0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1

G0

� �2

� 4
G2

G0

� �s2
4

3
5

vuuut

and

g1 ¼
G3 � ilbl2

2

l2
1 � l2

2

� �
sinh l1ð Þ

; g2 ¼
G3 � ilbl2

1

l2
2 � l2

1

� �
sinh l2ð Þ

:

Substituting equation (23) into (20a)–(20c), we obtain the
rest of the variables:

U1 ¼ g3 cosh l1yð Þ þ g4 cosh l2yð Þ; ð24aÞ

H1 ¼ g5 cosh l1yð Þ þ g6 cosh l2yð Þ; ð24bÞ

D1 ¼ g7 cosh l1yð Þ þ g8 cosh l2yð Þ; ð24cÞ

where

g3 ¼
1

a4 � a2
a3g5 þ

a4

a1
l1g1

� �
;

g4 ¼
1

a4 � a2
a3g6 þ

a4

a1
l2g2

� �
;

g5 ¼ � a5g1
a6l1

; g6 ¼ � a5g2
a6l2

;

g7 ¼
1

a4 � a2

a2

a1
l1g1 � a3g5

� �
;

g8 ¼
1

a4 � a2

a2

a1
l2g2 � a3g6

� �
:

Once H1 and D1 are solved, h1 can be directly determined
by H1 � D1.

4. Experiments

[16] The experimental study was conducted in a slope-
adjustable recirculating flume, 40 cm in width and 12 m in
length, located at the Hydrotech Research Institute, NTU.
The flow rate was controlled electronically and the water
depth was adjusted using a tailgate at the end of the flume.
An acrylic channel with sinusoidally varying width was
placed inside the flume (Figure 2). The average width of the
channel, 2B*0, was 32 cm; the amplitude of width variations,
AB*0, was 2.5 cm, leading to a value of d = 0.078; the
wavelength of width variations, L*b, was 335 cm, which
corresponds to a value of lb = 0.3, where lb = l*bB*0 is the
dimensionless wave number. The wide and narrow sections
were 37 cm and 27 cm in width, respectively; the void space
between the channel and flume was sealed to ensure that all
the flow would enter the channel. The length of the channel
was 10 m, consisting of three full cycles of width variations.
Upstream of the channel was a series of energy dissipation
and flow regulating devices; immediately downstream of
the channel was a bed load trap installed on the bottom of
the flume. The sediment used in this study was well-sorted
sand, with d*s = 1.58 mm and rs/r = 2.63.
[17] Bed topography was measured using a DTM scan-

ning system, which included a digital camera and a laser
sheet projector both mounted on an electric carriage moving
along the rails (Figure 2). At the beginning of each run, a
calibration procedure was performed and a projective matrix
was constructed to establish the relationship between the
2-D images taken by the camera and the corresponding 3-D
coordinates (see Spinewine et al. [2003] for details). After
each run, the carriage traveled along the flume and the laser
sheet projected on the bed formed a distorted line due to bed
deformation (Figure 3). The camera photographed the dis-
torted line at an equal time (thus distance) interval. The
DTM data were then obtained by converting each distorted
line into 3-D coordinates at the specified grids through the
established projective matrix. Bed topography of the two
sinusoidal cycles in the middle was scanned, where no
significant entrance or backwater effect was observed.
[18] The bottom of the channel was paved with a 10-cm-

thick sand bed. At the beginning of each experiment, the
sand bed was flattened, and the flume slope was adjusted to
a specified value. The initial bed configuration was recorded
with the DTM scanning system. A small flow was then
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supplied to the flume and the tailgate was raised to store
water in the channel, with special care taken to ensure that
minimal disturbances would be exerted on the bed. Once the
water was raised to a certain level, the flow rate was
gradually increased while the tailgate was gradually lowered
until a prescribed quasi-uniform flow was achieved. The
depths of water were measured at eight locations uniformly
distributed over two sinusoidal cycles, the average of which
was taken to be the depth of reference uniform flow, D*0.
During each run, the sediment collected at the bed load trap
was returned to upstream every 15 to 30 minutes, depending
on the transport rate. The flow kept running until a steady
state was reached, which was confirmed by the observed
steady bed forms and equilibrium bed load transport.
Usually 8 to 12 hours were needed to reach this steady
state, after which the flow was switched off and the water
was slowly drained. The final bed configuration was then
scanned. The difference between the final and initial bed
elevations gave the bed level perturbation h0*. A total of
15 runs were performed with various conditions (see

Table 2), covering the ranges of 3.6 � b � 13.5, 0.045 �
q0 � 0.103, and 0.035 � ds � 0.133, where t*0 = gD*0S was
used to calculate q0, in which g is the specific weight of
water, and S is the channel slope. These ranges are compa-
rable to those used by Repetto et al. [2002]. Formation of
alternate bars was very sensitive to disturbances that might
appear at the entrance. For the 15 runs, 6 were categorized as
stable runs in which only forced bars were present (S series),
while the remaining 9 runs were associated with migrating
or stationary alternate bars (F series). Shown in Figures 4a
and 4b are the central bar observed in run S-6 and the
alternate bars observed in run F-1, respectively. Because
experiments of forced bars under stable regimes require
special efforts and are relatively rare, the bed deformation
data discussed here are made available as auxiliary material1.

5. Results

5.1. Comparison of Model Results

[19] In section 5.1.1 we compare the experimental results
with the predicted results of our 2-D-Cs model that includes
the helical flow effect induced by streamline curvature and
two 2-D models that neglect the helical flows; while in
section 5.1.2 we compare the results of our 2-D-Cs model
with those of the 3-D and 2-D-k models presented by
Repetto et al. [2002], all incorporating the effect of helical
flow.
5.1.1. Comparison With Models Neglecting Helical
Flow Effect
[20] A typical forced bed form (central bar) observed in

run S-6 is shown in Figure 5 along with the results predicted
by our 2-D-Cs model (incorporating the helical flow effect)
and two previous 2-D models (neglecting the helical flow
effect) of Bittner [1994] and Repetto et al. [2002]. The
experimental result (Figure 5a) demonstrates a longitudinal
trend of deposition at the wide sections and scour at the
narrow ones, with the magnitudes of maximum deposit and
scour both on the order of 1 cm. The bed form predicted by
the 2-D-Cs model (Figure 5b) is in satisfactory agreement
with the observed result. The previous 2-D models are,
however, unable to reproduce the transverse bed deforma-
tion without including the effect of helical flow; only the
longitudinal component is captured (Figures 5c and 5d).
These are further demonstrated by the longitudinal and
transverse profiles of bed deformation (Figures 6 and 7).
Figure 6a shows that similar longitudinal profiles of bed
deformation (along the centerline) are obtained by different
models, which coincide well with the experimental result.
The transverse profiles of bed deformation shown in
Figure 7 demonstrate that the results of the previous 2-D
models lack any significant transverse variation. Repetto et
al. [2002] reached a similar conclusion by comparing the
results of their 2-D and 3-D models. The transverse profiles
of bed deformation predicted by the 2-D-Cs model are in
good agreement with the experimental data. At the narrow
sections, however, the 2-D-Cs model tends to underestimate
the scour depth at the center although the general trend of
concave profile is captured. Such a discrepancy arises from
the relaxed no-slip condition at the sidewalls, as previously

Figure 2. Photograph showing the experimental setup and
DTM scanning system. Shown in the front is the laser sheet
projected on the bed and the resulting distorted laser line.

1Auxiliary material is available at ftp://ftp.agu.org/apend/jf/
2004JF000160.
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mentioned in section 3.1.1 and will be discussed later in this
section.
[21] To further test the models on different types of bed

form, the forced bars observed in the flume experiments of
Bittner [1994] were also used. The experimental data of
Bittner [1994] include 23 runs (b ranging from 7.9 to 12.2)
performed in two channels (d = 0.38 and 0.15 in channels 1
and 2, respectively), among which 11 runs were stable and
associated with symmetric forced bars. A typical forced bed
form (side bars) observed in run C1-11 (lb = 0.8, S = 0.004,
b = 9.1, ds = 0.024, q0 = 0.102) is shown in Figure 8 along
with the predictions of different models. The experimental
result (Figure 8a) demonstrates a consistent longitudinal
trend of bed deformation, only now the maximum deposi-
tion occurred at both sides of the wide section. The flow
intensity through the constriction was sufficiently high such
that the deposit at the wide section was cut through at the
center leading to two separate bars at the sides and a
downstream central deposit. This qualitative feature is
captured by the 2-D-Cs model (Figure 8b). The 2-D model

of Bittner [1994] fails to replicate the bed form of side bars,
but demonstrates a purely central bar at the wide section
(Figure 8c). The 2-D model of Repetto et al. [2002] appears
to capture the transverse bed deformation (Figure 8d),
although weak and slightly out of phase with the observed
result.
[22] The amplitudes and shapes of these forced bars are

further demonstrated by the longitudinal and transverse
profiles of bed deformation (Figures 6 and 9). Figure 6b
shows the longitudinal profiles of bed deformation (along
the centerline) obtained by three different models. Overall,
the longitudinal profile predicted by the 2-D-Cs model is in
reasonably good agreement with the experimental data;
minor discrepancies arise from eliminating the nonlinear
perturbation terms in the analytical solution whose effect
becomes less negligible for a larger value of d (= 0.38) [Wu
and Yeh, 2004]. The longitudinal profile of bed deformation
predicted by the 2-D model of Repetto et al. [2002] is
similar to that obtained by the 2-D-Cs model, but exhibits a
phase lag with respect to the observed result. Such a phase

Figure 3. Illustration of (a) laser sheets projected on the bed and digital images of distorted laser lines
taken at (b) A-A0 and (c) B-B0 sections.
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lag was already demonstrated numerically by Repetto et al.
[2002]. The amplitude of longitudinal bed deformation
predicted by the 2-D model of Bittner [1994] is least
accurate among the three, with the maximum deposition

nearly twice greater than those predicted by the other two.
Since the only difference between the two previous 2-D
models is the bed load formula adopted (see Table 1), the
disagreement between their results is believed to originate
from this.
[23] Figure 9a shows that the 2-D-Cs model suitably

replicates the transverse bed deformation at the wide sec-
tion, with the near-bank deposition slightly overestimated.
The transverse variation predicted by the 2-D model of
Repetto et al. [2002] is weak, while the transverse profiles
predicted by the 2-D model of Bittner [1994] are totally out
of phase with the observed results (Figures 9a and 9b).
Moreover, Figure 9b shows that the 2-D-Cs model tends to
overestimate the scour depth near the bank but underesti-
mate that near the center of a narrow section, which is
attributable to the neglected no-slip boundary condition
whose effect becomes significant at the narrow sections.
The no-slip condition would retard the flow near the bank
and concentrate it toward the center, which would result in a
decrease of bed shear stress near the bank but an increase
near the center. Taking into account the no-slip boundary
condition would thus lead to a decrease of scour depth near
the bank and an increase near the center, such that the
discrepancies demonstrated in Figure 9b could be reduced.
[24] A comparison of the observed amplitudes of forced

bars with those predicted by the 2-D-Cs model is shown in
Figure 10, where the maximum bar heights H*BM, defined as
the difference between the highest and lowest bed levels
within a bar wavelength, are demonstrated. The results

Table 2. Summary of Experimental Conditions and Observed Bed

Formsa

Runb S D*0, cm U*0, m/s q0 b ds

Observed
Bar Typec

F-1 0.005 2.31 0.351 0.045 6.9 0.068 A, N
F-2 0.005 3.13 0.438 0.061 5.1 0.050 B, C
F-3 0.005 3.65 0.489 0.071 4.4 0.043 B, C
F-4 0.007 3.03 0.506 0.082 5.3 0.052 B, C
F-5 0.007 1.91 0.361 0.052 8.4 0.083 B, N
F-6 0.007 1.89 0.357 0.051 8.5 0.084 B, S
F-7 0.01 1.19 0.298 0.046 13.5 0.133 A, S
F-8 0.01 2.64 0.547 0.103 6.1 0.060 B, C
F-9 0.005 2.96 0.420 0.057 5.4 0.053 B, N
S-1 0.004 3.31 0.408 0.052 4.8 0.048 C
S-2 0.004 4.40 0.500 0.068 3.6 0.036 C
S-3 0.005 2.91 0.416 0.057 5.5 0.054 C
S-4 0.005 3.24 0.449 0.063 4.9 0.049 C
S-5 0.003 4.06 0.409 0.047 3.9 0.039 C
S-6 0.003 4.49 0.439 0.052 3.6 0.035 C
aAbbreviations are as follows: S, channel slope; D*0, depth of reference

uniform flow; U*0, velocity of reference uniform flow; q0, Shields stress of
reference uniform flow; b, aspect ratio; ds, dimensionless size.

bF series includes the unstable runs in which alternate bars and forced
bed forms coexisted; S series includes the stable runs in which only forced
bars were present.

cA, migrating alternate bars; B, stationary alternate bars; S, side bars; C,
central bars; N, forced bed form not identified.

Figure 4. Photographs showing (a) central bar observed in run S-6 and (b) alternate bars observed in
run F-1.
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indicate that the 2-D-Cs model tends to overestimate the
maximum bar heights of side bars but underestimate
those of central bars. It has been speculated by Bittner
[1994] that the linearized solution may not be valid for
the large values of d used in their experiments. In
addition, the neglected no-slip condition discussed above
may play a role in yielding such errors. Nevertheless,
since we take our main interest in the development of
different bed forms rather than the precise evaluation of
their amplitudes (see section 6.2), the 2-D-Cs model may
well serve as an useful tool for predicting bar patterns as
long as it produces results comparable to those obtained

by the 3-D or 2-D-k model, which will be discussed
subsequently in more detail.
5.1.2. Comparison With Models Incorporating
Helical Flow Effect
[25] To compare the models that incorporate the effect of

helical flow, the results obtained from the 3-D and 2-D-k
models of Repetto et al. [2002] and our 2-D-Cs model are
shown in Figure 11, where the transverse profiles of bed
deformation at different values of x (i.e., different sections)
are demonstrated (q0 = 0.1, ds = 0.05, and b = 10). For the
smaller wave number (lb = 0.3), the models predict forma-
tion of central bars at the wide sections (x = 0). As the wave

Figure 5. Contour plots showing (a) forced bars observed in run S-6 and predicted results of (b) 2-D-Cs

model (this study), (c) 2-D model [Bittner, 1994], and (d) 2-D model [Repetto et al., 2002] (lb = 0.3, q0 =
0.052, ds = 0.035, b = 3.6).
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number increases (lb = 0.5), the central bars would shift
downstream leading to a pattern of side bars at the wide
sections [Repetto et al., 2002]. The results obtained by the
2-D-Cs and 2-D-k models are similar, both in satisfactory
agreement with the 3-D solution. However, as mentioned
above, the 2-D-Cs model tends to underestimate the max-
imum bar heights of central bars but overestimate those of
side bars, while the 2-D-k model consistently underesti-
mates the maximum bar heights, as shown in Table 3, where
the maximum bar heights predicted by the 3-D model are
taken to be the basis for error assessment. The results given
in Table 3 appear to indicate that the maximum bar heights
predicted by the 2-D-Cs model are more accurate than those
predicted by the 2-D-k model.
[26] In summary, the qualitative and quantitative com-

parisons made in sections 5.1.1 and 5.1.2 demonstrate
that by incorporating the helical flow effect induced by
streamline curvature the 2-D-Cs model gives satisfactory
predictions of bed deformation, especially for the trans-
verse component. Although Repetto et al. [2002] have
previously made a correction for the effect of helical flow
to modify their 2-D model and reached a similar conclu-
sion, the outcomes associated with the simplified correc-
tion scheme used in the 2-D-Cs model demonstrate the
utility of our approach over a 2-D-k model whose
correction has to rely on the 3-D numerical solution.
The credibility of our 2-D-Cs model is suitably justified,
thus the model may well be used to predict a variety of

forced bed forms that would develop under different
combinations of parameter values.

5.2. Types of Forced Bars

[27] We present herein a classification system for forced
bars induced by variations of channel width. Recall that
Repetto et al. [2002] found that the wave number of
width variations is the most important parameter on
which the bed topography depends. For increasing values
of lb, an increasing phase lag is found between bank
profile and transverse bed configuration. However, our
model results indicate that lb is not the only factor
dominating such phase shift. Rather, the resulting bar
pattern is a function of multiple factors (such as lb, q0,
ds, and b) that simultaneously act to influence its out-
come, thus a variety of bed forms would develop under a
given value of lb. Moreover, the width ratio b, which
practically varies over a wide range for an observed value
of lb, has long been seen as a basic control on the
conditions for bed form development. Hence we choose
to use b as a controlling parameter for classification of
bar patterns. Variations of q0 and ds, however, only
influence the bar heights but not the bar patterns. The
proposed approach is the first to classify the forced bars
using the tractable locations of their peak deformations
instead of using the intricate leading components of the
Fourier representation of bed profile previously employed
by Repetto et al. [2002].

Figure 6. Longitudinal profiles of observed and predicted bed deformations at the centerline. (a) Run
S-6 (this study) (lb = 0.3, q0 = 0.052, ds = 0.035, b = 3.6). (b) Run C1-11 [Bittner, 1994] (lb = 0.8, q0 =
0.102, ds = 0.024, b = 9.1).
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[28] The bar patterns demonstrated by our model results
can be classified into four types, namely, purely central bars,
transverse bars of central mode 1, side bars, and transverse
bars of central mode 2. Typical examples of these bar
patterns are shown in Figure 12 using the gray-scale contour
plots of h0, where positive and negative values of h0 (i.e.,
deposition and scour) are demonstrated with brighter and
darker scales, respectively. Transition from one type to
another is controlled by several variables but mainly the
width ratio b. For increasing values of b, an increasing
downstream shift of central bars is observed. For a smaller
value of b (=2), purely central bars would form at the wide
sections. As the value of b increases (=15), transverse bars
would develop across the wide sections, with two lobes
extending to upstream and peak deformations occurring at
slightly downstream of the widest sections. This type of
transverse bar and purely central bars are both classified as
central bars of mode 1 because their peak values of h0 occur
at the centerline within region 1 (defined in Figure 1 as the
region covering a 1/4 wavelength immediately downstream
of the widest section). A further increase of b (=25) would

result in formation of side bars at the wide sections. At a
larger value of b (=50), transverse bars of the other kind
would develop at upstream of the widest sections. Trans-
verse bars of this kind are similar to transverse bars of
central mode 1, but with an opposite orientation. This type
of transverse bars is classified as central bars of mode 2
because their peak deformations occur at the centerline
within region 2 (i.e., the region covering a 1/4 wavelength
immediately upstream of the widest section). Among these
four types of bar pattern, the first three have been observed
in the laboratory flumes; however, the last one (i.e., trans-
verse bars of central mode 2) was, to our best knowledge,
never reported in the literature.
[29] The longitudinal profiles of h0 along the centerline

are demonstrated in Figure 13a for different types of forced
bars. Deposition and scour occur near the wide (x = 0, 1, 2,
3) and narrow (x = 0.5, 1.5, 2.5) sections, respectively. The
central bars of mode 1 and side bars have consistent trends
of variation with b. For example, the amplitude of h0

decreases with the increase of b, but the downstream shift
of central bars increases with b. When it comes to the

Figure 7. Transverse profiles of observed and predicted bed deformations at (a) wide and (b) narrow
sections: run S-6 (this study) (lb = 0.3, q0 = 0.052, ds = 0.035, b = 3.6).
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central bars of mode 2, the amplitude of h0 and the
downstream shift of central bars become much greater.
The transverse profiles of bed deformation are demonstrated
in Figure 13b. For purely central bars, convex and concave
profiles are observed at the wide and narrow sections,
respectively. For transverse bars of central mode 1, flatter
and wider profiles of depositions and scours are observed.
For side bars, two peaks and troughs occur at both sides of
the wide and narrow sections, respectively. The lateral
profiles of the transverse bars of central mode 2 are,
however, similar to those of side bars. The apparent dis-

crepancies between the transverse bars of central modes 1
and 2 also indicate that a significant phase shift is associated
with the latter.

6. Implications for Incipient Bifurcation

6.1. Mechanisms of Channel Bifurcation

[30] Channel bifurcations constitute one of the unit pro-
cesses that govern the generation and development of a
braided network. The laboratory observations made by
Ashmore [1982, 1991] provided detailed descriptions of

Figure 8. Contour plots showing (a) forced bars observed in run C1-11 [Bittner, 1994] and predicted
results of (b) 2-D-Cs model (this study), (c) 2-D model [Bittner, 1994], and (d) 2-D model [Repetto et al.,
2002] (lb = 0.8, q0 = 0.102, ds = 0.024, b = 9.1).
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several unit processes, such as formation of alternate bars,
channel bifurcations and confluences, incision of bars,
avulsions, and channel migration. Among these, channel
bifurcation is the formative process of fundamental impor-
tance for understanding the behavior of braided rivers [e.g.,
Ferguson, 1993; Bolla Pittaluga et al., 2003]. The sensitive
dependence of braided rivers on bifurcation conditions has
been highlighted by Hoey [1992]. Channel bifurcations may
be initiated with depositional or erosional processes
[Federici and Paola, 2003]. Ashmore [1991] identified four
possible mechanisms through which channel bifurcations
may develop, two depositional and two erosional. The
former include central bar deposition and transverse bar
conversion; the latter include chute cutoff of point bars and
dissection of multiple bars. Only depositional bifurcations
are relevant to the present study, thus a brief description of
their mechanisms is given below.
[31] Central bar deposition is a process in which an

elongated, more or less symmetric, medial bar develops at
the middle of a channel [e.g., Ashmore, 1991; Ashworth,

1996]. This mechanism, first described by Leopold and
Wolman [1957], is the most commonly documented process
of incipient braiding. The central bar initiation and growth
are generally caused by the stalling of bed load sheets
around the channel centerline due to the effect of streamline
divergence, which has been confirmed experimentally by
several investigators [e.g., Ashworth, 1996; Federici and
Paola, 2003]. On the other hand, the medial bar may also be
converted from a symmetric transverse unit bar [Smith,
1974; Church and Jones, 1982; Ashmore, 1991], whose
downstream margin is usually marked by accumulation of
coarser material. Bed load sheets are transported across the
lateral margins of the transverse unit bar, but the central
portion of the lee face stalls in the channel. Subsequent
enlargement of the resulting medial bar occurs by lateral
accretion and downstream extension. The presence of a
submerged medial bar, initiated from either central bar
deposition or transverse bar conversion, forces the flow to
diverge and the bar nucleus is eventually exposed. The
divided flows concentrate on both sides of the bar and

Figure 9. Transverse profiles of observed and predicted bed deformations at (a) wide and (b) narrow
sections: run C1-11 [Bittner, 1994] (lb = 0.8, q0 = 0.102, ds = 0.024, b = 9.1).
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produce scour pools against both banks, thus induce wid-
ening of the channel and generation of a bifurcation.

6.2. Criteria for Incipient Bifurcation

[32] From the description given above, it becomes clear
that depositional bifurcations develop as a consequence of
flow division around the medial bars evolving from either
central deposits or transverse unit bars. As such, forma-
tion of central bars may be viewed as a sign for incipient
bifurcation, because such bed forms may induce the
planimetric instability in a way that the flow enhances
any small initial width variation leading to the generation
of a bifurcation. Accordingly, the analytical solution
obtained in section 3.2 may be used to establish a
quantitative criterion for central bar formation, or equiv-
alently, incipient bifurcation.
[33] For central bars of mode 1 to form in a channel (i.e.,

for central peaks to occur in region 1), the dimensionless
bed deformation h0 must satisfy the following conditions at
y = 0:

rh0 ¼ @h0

@x
;
@h0

@y

� �
¼ 0; ð25aÞ

@2h0

@x2
< 0; ð25bÞ

@2h0

@x2
@2h0

@y2
� @2h0

@x@y

� �2

> 0: ð25cÞ

Equation (25) assures that h0 is a maximum value and the
location of maximum h0 is not a saddle point. Since h0 is

symmetric about x axis (e.g., see Figure 13b), @h0/@y = 0 is
always true at y = 0 such that equation (25) can be
simplified as

@h0

@x
¼ 0; ð26aÞ

@2h0

@x2
< 0; ð26bÞ

@2h0

@y2
< 0: ð26cÞ

From equation (17), we have a linear expression for h0, i.e.,

h0 ¼ d h1 exp ilbxð Þ þ c:c:½ � ¼ 2dRe h1 exp ilbxð Þ½ �; ð27Þ

where h1 = H1 � D1 is determined from (24), and can be
expressed in the following form:

h1 ¼ f1 þ if2; ð28Þ

in which f1 = Re[h1] and f2 = Im[h1] are both real functions
of y. Then, equation (27) can be modified as

h0 ¼ 2d f1 cos lbxð Þ � f2 sin lbxð Þ½ �: ð29Þ

The bank profile defined by equation (1) indicates that the
values of sine and cosine are both positive in region 1.
Based on this, we substitute equation (29) into (26) and
obtain a final form of the criteria for central bar formation:

f1 þ
f 22
f1

> 0 ð30aÞ

d2f1

dy2
þ d2f2

dy2
f2

f1
< 0: ð30bÞ

Equation (30) may be used to determine whether the central
bars of mode 1 would develop (i.e., whether the condition
of incipient bifurcation would occur) under a specific
combination of lb, q0, ds, and b.
[34] The criterion presented in (30) is different from that

employed by Repetto et al. [2002], who followed the
simplified approach classically proposed by Ikeda et al.
[1981] to predict whether bank erosion tends to widen the
channel where it is wider than the average, whereby the rate
of bank retreat is related to the longitudinal excess velocity
at the banks obtained numerically through the 3-D model.
Here we choose to use the resulting bed form rather than the
bank velocity as a criterion for predicting incipient bifurca-
tion because the former has been suitably verified by flume
experiments but the latter is potentially subject to consider-
able errors due to neglecting the no-slip boundary condition
in solving the flow field. In fact, Sun et al. [2001] have
pointed out that such flow solutions are only valid some
distance away from the bank. According to the velocity
distribution measured in our testing channel using the LDA

Figure 10. Comparison between observed and predicted
maximum bar heights. Data include six central bars (this
study) and 11 side bars [Bittner, 1994].
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(laser Doppler anemometer), we found that the longitudinal
velocities measured along a transverse section agree well
with the predicted results in the central (off-bank) region but
deviate from the analytical solution in the near-bank region,
where the measured velocities are much smaller than the
calculated values. This is especially apparent for the narrow
section, where the model predicts the near-bank velocities to
be greater than the off-bank velocities, which is clearly
against reality. In our 2-D-Cs model, although the bed
deformations are based on such distorted near-bank veloc-
ities, the resulting overall bed form (or bar pattern) is
generally satisfactory. In other words, by relaxing the no-
slip condition the model gives distorted velocities and bed
deformations only in the near-bank region. For the major
part of the channel, the flow field is, however, reasonably

accurate and the resulting bed topography is useful for
predicting incipient bifurcation.
[35] For a given combination of lb, q0, and ds, we found

that the criteria given by (30) are satisfied for a range of b.
When the value of b is smaller than a lower critical value

Figure 11. Transverse profiles of bed deformation at different values of x, obtained with three different
models for (a) lb = 0.3 and (b) lb = 0.5 (q0 = 0.1, ds = 0.05, b = 10).

Table 3. Comparison of Maximum Bar Heights Predicted by

Different Models

Model

Dimensionless Maximum
Bar Height HBM

Central Bars
(lb = 0.3)

Side Bars
(lb = 0.5)

3-D model [Repetto et al., 2002] 5.53 (base value) 5.07 (base value)
2-D-k model [Repetto et al., 2002] 4.27 (–23% error) 4.94 (–3% error)
2-D-Cs model (this study) 4.79 (–13% error) 5.22 (+3% error)
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bc1, the criteria given by (30) are satisfied and thus the
central bars of mode 1 would develop. As the value of b
exceeds bc1, the criteria are violated and side bars would
form in the channel. If the value of b continues to increase
and exceeds an upper critical value bc2, the central bars of
mode 2 would be present. For illustration, a contour plot of
bc1 corresponding to our experimental setting (lb = 0.3) and
typical ranges of q0 and ds is presented in Figure 14a. The
values of bc1 cover a range roughly between 8 and 22, with
the largest values occurring at moderate q0 (0.08 
 0.14)

and larger ds (0.07 
 0.2). The values of bc1 corresponding
to the experimental setting (lb = 0.8) of Bittner [1994] are,
however, all very close to 0 over these typical ranges of q0
and ds, thus are not shown here. Alternatively, the contour
plot of bc2 is demonstrated in Figure 14b, where the values
of bc2 cover a range roughly between 8 and 20, with the
largest values occurring at smallest ds (<0.02). Given flow
and sediment conditions, these contour plots may be used to
determine bc1 and bc2 below which central and side bars
would form in the channel, respectively.

Figure 12. Gray-scale contour plots of dimensionless bed deformation h0 for different types of forced
bars: (a) purely central bars (lb = 0.3, q0 = 0.1, ds = 0.01, b = 2); (b) transverse bars of central mode 1
(lb = 0.3, q0 = 0.1, ds = 0.01, b = 15); (c) side bars (lb = 0.3, q0 = 0.1, ds = 0.01, b = 25); and (d) transverse
bars of central mode 2 (lb = 0.3, q0 = 0.1, ds = 0.2, b = 50). Positive and negative values of h0 (i.e.,
deposition and scour) are demonstrated with brighter and darker scales, respectively.
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[36] To check if the proposed criteria would result in
correct predictions of bar pattern, two sets of experimental
data, one from this study and the other from Bittner [1994],
are employed herein. The former include 10 observed
central bars and 2 side bars (see Table 2), the latter include
11 side bars observed in two different channels. The results
are demonstrated in Figure 15, where the observed values of
b are compared with the corresponding critical values. It is

found that the observed bar patterns all coincide with the
predicted bed forms (i.e., central bars of mode 1 and side
bars in Figures 15a and 15b), indicating that the proposed
criteria may provide credible predictions of bar pattern. The
corresponding results predicted with the criterion of Repetto
et al. [2002] are also shown in Table 4, where their
approach correctly predicts formation of side bars but fails
to predict those central bars observed at relatively small

Figure 13. (a) Longitudinal profiles of dimensionless bed deformation h0 at the centerline. (b) Transverse
profiles of dimensionless bed deformation h0 at the wide and narrow sections. These forced bars are
identical to those shown in Figure 12.
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values of b. A possible reason for this is that the longitu-
dinal excess velocity at the banks is adopted as a criterion
for predicting planimetric instability. As mentioned earlier,
due to the relaxed no-slip condition, considerable error is
associated with the predicted near-bank velocities particu-
larly for narrow channels. Repetto et al. [2002] pointed out
that such a simplified treatment would always lead to a
negative value for the real part of the longitudinal excess
velocity at the banks, and thus a prediction of side bars at
those small values of b.
[37] To further test the proposed criteria at a larger value

of b (=15), the theoretical findings are extracted from the
work of Repetto et al. [2002] for two different lb values
(0.3 and 0.8). For lb = 0.3, Repetto et al. [2002] predicted
formation of central bars at q0 = 0.08 and 0.1, whereas side
bars were predicted to develop at q0 = 0.06, 0.15, 0.2 and
0.3 (for ds = 0.1). The corresponding bed forms predicted by
our criteria agree with the findings of Repetto et al. [2002]
(Figure 15a and Table 4). For lb = 0.8, the theoretical
findings of Repetto et al. [2002] are invariably side bars,

Figure 14. Contour plots showing (a) lower critical values
bc1 for lb = 0.3 and (b) upper critical values bc2 for lb = 0.8,
both corresponding to typical ranges of q0 and ds.

Figure 15. Comparisons between observed values of b
and corresponding values of (a) bc1 (for lb = 0.3) and (b) bc2
(for lb = 0.8). Boldface indicates the regions of predicted
bar pattern.
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conflicting with our predictions, i.e., the central bars of
mode 2 (Figure 15b and Table 4). Repetto et al. [2002]
found that the forced bar pattern is strongly dependent upon
the wave number of width variations, such that for given
values of b and q0 a threshold value of lb exists above
which the resulting bed form is always side bars (in this case
the threshold value would be 0.33). Our model results,
however, indicate that the final bed form is dependent upon
a combination of multiple factors instead of one single
factor, and here the central bars of mode 2 would develop
for b > bc2. Since neither of these predictions for lb = 0.8 is
supported by laboratory observations, it remains as an open
problem for future studies.
[38] From above, we found that the predictions obtained

using our criterion and that of Repetto et al. [2002] are not
fully consistent. Here the merit of using our approach to
predict the forced bar patterns and thus the conditions of
incipient bifurcation is further elucidated. Repetto et al.
[2002] reported that the conditions under which the per-
turbed flow produces a positive erosion rate at the wide
section, implying incipient bifurcation of a channel, are
strictly connected with the transverse deformations of flow
and bed topography associated with the 3-D effects. Thus
even though the cross-sectional average velocity attains its
maximum close to the narrowest section, it is possible that
the velocity and shear stress at the banks peak where the
channel is wider than the average. In the latter situation the
planform is unstable, as bank erosion tends to enhance
the initially small width perturbation. However, according
to the results of their 2-D model (without helical flow),
Repetto et al. [2002] found that the planform would be
invariably stable since the longitudinal bank velocity always
attains its maximum value close to the narrowest section. In
this regard, their 3-D model may result in a more accurate
flow field that includes the helical flows, but without
considering the no-slip boundary condition the near-bank
velocities could still be subject to considerable errors.
Therefore we believe that it is more reasonable to use the
suitably justified bed topography resulting from the 2-D-Cs

model with only minor distortions being present near the
banks, but not to use the distorted bank velocity itself, as a
criterion for predicting planimetric instability.
[39] As observed in our experiments, the final bed forms

were extremely sensitive to boundary disturbances as well
as the instabilities associated with turbulent flows and
sediment transport. To create stable regimes in which only

forced bars are present, we had to use small values of b;
special efforts were also made to minimize boundary dis-
turbances. In most situations, alternate bars and forced bars
would coexist in the channel. For example, 9 out of 15 runs
performed in this study were associated with alternate bars,
while among the 23 runs of Bittner [1994] there were
12 unstable runs in which alternate bars developed. The
threshold conditions for formation of alternate bars, as
addressed by Colombini et al. [1987], are beyond the scope
of this study. The proposed critical values of b corresponding
to the central and side bars are, however, necessary con-
ditions for formation of these forced bed forms but not
sufficient conditions for establishing stable regimes. Braid-
ing generally develops in channels where alternate bars are
frequent and bar migration is ubiquitous. It also occurs in
channels whose aspect ratios are typically much greater than
those under which central bars formed in our channel. The
central bars observed in our experiments offer useful data for
verification of model results under stable regimes; the
proposed criterion provides credible predictions of forced
bed forms and useful implications for incipient bifurcation.
However, it should be noted that the unstable regimes in
which alternate and forced bars coexist are probably more
relevant to the field processes of channel braiding.

7. Conclusions

[40] In this study we found that by relaxing the no-slip
condition at the banks, the 2-D-Cs model gives distorted bed
deformations in the near-bank region. For the major part of
the channel, the flow field is, however, reasonably accurate
and the resulting bed topography is satisfactory. The 2-D-Cs

model tends to overestimate the maximum bar heights of
side bars, but underestimate those of central bars. The
forced bed forms are classified into four different bar types
based on their locations of peak deformations. Transition
from one type to another is controlled by several variables
but especially the width ratio b. For increasing values of b,
central bars will shift downstream, leading sequentially to
the patterns of purely central bars, transverse bars of central
mode 1, side bars, and transverse bars of central mode 2.
Among these bed forms, the transverse bars of central mode
2 were never observed in the flume tests, thus remain to be
confirmed experimentally.
[41] The criteria for central bar formation, implying a

condition required for incipient bifurcation, are derived

Table 4. Comparison Between Observed and Predicted Bed Formsa

Source of Data Observed Bed Form

Predicted Bed Form

Using Criteria Presented in this Study Using Criteria Proposed by Repetto et al. [2002]

This study (lb = 0.3) central bars (mode 1)b central bars (mode 1) side bars (incorrect prediction)
side barsc side bars side bars

Repetto et al. [2002]d (lb = 0.3) � � � central bars (mode 1) central bars

� � � side bars side bars

Bittner [1994]e (lb = 0.8) side bars side bars side bars
Repetto et al. [2002]f (lb = 0.8) � � � central bars (mode 2) side bars

aBoldface indicates that bed forms predicted by the two criteria are conflicting.
bq0 = 0.047 
 0.103; ds = 0.035 
 0.06; b = 3.6 
 6.1.
cq0 = 0.046 
 0.051; ds = 0.084 
 0.133; b = 8.5 
 13.5.
dq0 = 0.06 
 0.3; ds = 0.1; b = 15.
eq0 = 0.056 
 0.138; ds = 0.021 
 0.032; b = 7.9 
 12.2.
fq0 = 0.06 
 0.2; ds = 0.1; b = 15.
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analytically using the linear solution of bed deformation.
Given lb, q0, and ds, the central bars of mode 1would develop
for b < bc1, the central bars of mode 2 would form for b > bc2,
whereas side bars would be present for bc1 < b < bc2. The bed
forms predicted by these criteria coincide with the observed
bar patterns. The approach proposed by Repetto et al. [2002]
based on the bank velocity fails to predict the observed central
bars at small values of b. For large values of lb and b, their
approach invariably predicts formation of side bars, which
conflict with the central bars of mode 2 predicted by our
criteria. The outcomes demonstrate the merit of using the
resulting bed topography that is overall satisfactory but
distorted only near the banks, instead of using the distorted
bank velocity itself, as a criterion for predicting planimetric
instability. However, the proposed criteria for formation of
different bar patterns are necessary but not sufficient con-
ditions for establishing stable regimes. Braiding generally
develops in channels where alternate and forced bars coexist;
in that sense the unstable regimes are probably more relevant
to field processes.As such, the nonlinear interactions between
free and forced bars need to be resolved in the future. In
addition, the effects of mixed grain sizes and partial transport
[Wu and Yang, 2004] in gravel bed rivers may also be
incorporated into future studies.

Notation

A dimensionless amplitude of width variations.
a a coefficient for the effect of streamline

curvature.
a1 
 a10 coefficients defined in equation (20).

B*0 average half-width of the channel.
b dimensionless local half-width of the channel.
b0 perturbed term of b.
b* local half-width of the channel.
Cf friction coefficient.
Cf0 friction coefficient of reference uniform flow.
Cs dimensionless local curvature of streamline.
D dimensionless water depth.
D0 perturbed term of D.
D* water depth.
D1 linear solution of D0.
D*0 average depth of reference uniform flow.
ds dimensionless sediment diameter.
d*s sediment diameter.
F0 Froude number of reference uniform flow.
f1 real part of h1.
f2 imaginary part of h1.
g gravitational acceleration.
H dimensionless water level.
H0 perturbed term of H.
H* water level.

HBM dimensionless maximum bar height (=H*BM/D*0).
H0 dimensionless local water level of reference

uniform flow.
H1 linear solution of H0.

H*BM maximum bar height.
H*0 local mean water level of reference uniform

flow.
L*b wavelength of width variations.

(qx, qy) dimensionless sediment transport vector.
(q*x, q*y) sediment transport vector per unit width.

R density difference ratio = (rs � r)/r.
r a coefficient for transverse bed gradient.
S channel slope.

s1 
 s3 coefficients defined in equation (20).
(U, V) dimensionless velocity vector.
(U0, V0) perturbed terms of (U, V).

(U*, V*) velocity vector.
(U1, V1) linear solutions of (U0, V0).

U*0 average velocity of reference uniform flow.
Vs corrected dimensionless transverse velocity.
x dimensionless longitudinal coordinate.
x* longitudinal coordinate.
y dimensionless transverse coordinate.
y* transverse coordinate.
a angle between average particle path and x*

axis.
b average aspect (or width to depth) ratio = B*0/

D*0.
bc1 a lower critical aspect ratio.
bc2 an upper critical aspect ratio.

G0 
 G3 coefficients defined in equation (22).
g specific weight of water.

g1 
 g8 coefficients defined in equations (23) and (24).
c angle between directions of local shear stress

and x* axis.
d a small perturbation of channel width (=A/2).
F dimensionless bed load intensity function.
F0 bed load intensity of reference uniform flow

(=qx0).
q dimensionless bed shear stress (Shields param-

eter).
qc dimensionless critical shear stress.
q0 dimensionless shear stress of reference uniform

flow.
r, rs water and sediment densities.

h dimensionless bed level.
h0 perturbed term of h.
h0* bed level perturbation (=h0D*0).
h1 linear solution of h0.
lb dimensionless wave number of width variations.

l1, l2 coefficients defined in equation (23).
l*b wave number of width variations =2p/L*b.
t* local bed shear stress.
t*0 bed shear stress of reference uniform flow.

(tx, ty) dimensionless bed stress vector.
(t*x, t*y) bed shear stress vector.
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