Rolling and Lifting Probabilities for Sediment Entrainment
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Abstract: This study addresses the rolling and lifting probabilities for sediment entrainment by incorporating the probabilistic features
of the turbulent fluctuation and bed grain geometry. The lognormally distributed instantaneous velocity and uniformly distributed initial
grain position, along with a relation between lift coefficient and particle Reynolds number, are used to extend the theoretical formulation
of the entrainment probabilities in smooth-bed flows. The two threshold conditions identified herein enable us to precisely define the
probabilities of entrainment in the rolling and lifting modes. The results obtained in this study coincide well with the published data. The
lifting probability increases monotonously with the dimensionless shear $tresBich is consistent with the earlier results yet displays
improved agreement with the experimental data. The maximum value of rolling probability, with a magnitude of 0.25, oécurs at
~0.15. Forf<0.05(or 6>0.6), the rolling(or lifting) probability makes up more than 90% of the total entrainment probability and thus
can be used as an approximation to the total probability of entrainment. The proposed rolling and lifting probabilities are further linked
to the two separate criteria for incipient motion to explore the critical entrainment probabilities. The results reveal that a consistent
probability corresponding to the critical state of sediment entrainment cannot be found.
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Introduction and thus employed the probabilistic model as an alternative ap-
proach to the sediment entrainment probleny., Einstein 1942;
Sediment entrainment is defined as the transition from repose toGrass 1970: Gessler 1974and the prediction of bed load trans-
displacement. Previous studi¢s.g., Halow 1973; Drake etal. ot (e.g., Einstein 1950; Paintal 1971; Sun and Donahue 2000
1988 indicated that the entrainment of sediment particles occurs The field and laboratory observations reported in several recent
in four different ways, namely, rolling, sliding, lifting, and bounc- oo (e.g., Lavelle and Mofjeld 1987: Kirchner et al. 1990:

ing (or impact ejection The initiation of particle motion by slid- Buffington et al. 1992; Wilcock et al. 199@lIso confirmed the

ing or bouncing occurs only rarely and is much less 'mp"”a”F variability of critical shear stress that could be attributed to a

than the other two modes, thus often neglected in the analys'snumber of random factors. The contributors to the stochastic na-

E?;Eﬂiﬁtegfiﬂgmégz ?l;agrslé:netinagéit?sagt;elélr:‘grlf\?::ee?%-t de_ture of sediment entrainment include the temporal fluctuations of
cades from various view ointSreviewedq by Buffington gnd turbulent flow (Kalinske 1947, heterogeneities in grain size,
P y g shape, and densit{Bridge and Bennett 1992bed grain geom-

Montgomery 199Y. One approach is to determine the critical SY .
NS . . . etry (Naden 198y, availability of sedimen{Church 1978 expo-
shear stress for incipient motion of sediment. The work of Shields sure and sheltering effe¢McEwan and Heald 2001and bed

(1936 is probably the most well-known entrainment criterion that h P icol tal. 200liust t ¢ f
falls into this category. Quantification of the threshold shear stress 049 ness(Papanicolaou et al. 20B1just to mention a few

is the basis for prediction of transport rate in many bed load @Mong many others. _ _

equations (e.g., Meyer-Peter and Mar 1948; Parker 1979: The propablllstlc gpproach to modehryg sediment transport has
among others Lately, Ling (1995 further derived the rolling and ~ P&€n showing promise, however, a variety of entrainment prob-
litting criteria for incipient motion of spherical sediment particles, abilities was used for developing bed load formulas. For example,
His results reveal that the lifting threshold is consistently higher Einstein(1950 used the lifting(pickup) probability to derive the
than the rolling threshold in the hydraulically smooth and transi- bed load function; Sun and Donah(&000 employed the rolling
tional flow regimes. On the other hand, some researchers believedrobability in their fractional bed load equation, whereas Paintal

the existence of a range of threshold values for initial movement (1971 used the sliding probability in his bed load model. Cheng
and Chiew(1998 presented a theoretical formulation of the lift-

lassociate  Professor, Dept. of Bioenvironmental Systems ing probability for_ sediment entrainmt_ant, whic_h was later modi-
Engineering and Hydrotech Research Institute, National Taiwan Univ., fied by Wu and Lin(2002. Both of their works incorporated the
Taipei 106, Taiwan, Republic of China. E-mail: fewu@hy.ntu.edu.tw probability distribution of instantaneous velocity to explore the
2Research Assistant, Dept. of Bioenvironmental Systems relationship between lifting probability and flow condition. The
Engineering, National Taiwan University, Taipei 106, Taiwan, Republic Gaussian and log-normal distributions of instantaneous velocity
of China. _ _ _ _ were adopted in their analyses, respectively. Their optimal
be ';‘3;%ig'esdm;grs'%i‘\)/ipdeu;“gg'p‘;‘:éy %O 22)2; (;S‘iﬁ:riltgs?gcgzlogi rgrl1‘;tchoices of a constant lift coefficient were based on the best fitting
: to the experimental data but not to vary as a function of the flow
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Fig. 1. Definition sketch showing longitudinal sectior-{ plane of bed grain geometry, flow velocity, and forces acting on Sphere 1

ment entrainment under three representative bed packing densitie¥he schematization is three dimensional, ix.y, and z axes
corresponding to the isolated, wake interference, and skimmingrepresent the longitudinal, vertical, and transverse directions, re-
flow regimes. However, further studies incorporating more gen- spectively. The theoretical bed level<£0), where flow velocity
eral considerations can be conducted to modify the formulation of is zero, is set to be located at a distance below the top of the bed
entrainment probability. The purpose of this study is to develop grains. A range of values have been used in the literature indicat-
theoretical components for evaluating two types of entrainment jng that the bed level is commonly taken as @1%.3d below
probability, i.e., the I’Olling and ||ft|ng probabilities, in hydl’auli- the top of the sand_grain roughne{\ﬁ'idge and Bennett 1992;
cally smooth-bed and transitional open-channel flows. The thresh-Nezy and Nakagawa 1993To be consistent with the preceding
olds for two different entrainment modes are identified, which \york of this paper(van Rijn 1984; Cheng and Chiew 1998; Wu
lead to a more precise definition of the rolling and lifting prob- 4.4 Lin 2002, a distance of 0.25is adopted in the present study.
abilities. The present study extends the previous work of Wu and aq jjystrated in Fig. 1, Sphere 1 is in contact with an upstream
Lin (2002 in the sense that both the fluctuation of turbulent flow and a downstream bed partiolSpheres 2 and 3, respectively
“The point of contact between Spheres 1 andaBeled asC) is
located at a distance &ffrom the bed level, while the bottom of
Sphere 1 is at the position with a distanceddfom the bed level
(note that botth andd are positive upwards and negative down-
wardg. The lower and upper limits o3 are shown in Figs. @

and b, respectively. Whens=—0.75d, Sphere 1 is at the
lowest-possible position to protrude into the flow; whén
=0.116, Sphere 1 is resting at the highest-possible position to
remain stable. The initial position of Sphere 1 is supposed to be
Theoretical Components randomly oriented relative to the bed level, thuss treated as a
random variable. Following the encouraging results of Paintal
(1971 and Wu et al.(2000, we accept thad is uniformly dis-
tributed. Although a near-normal distribution with positive skew-
Consider a spherical particle of sideresting on the bed consist- ness has been suggested as a first approximation to the gravel-bed
ing of identical sphereglongitudinal section shown in Fig.)1 topography(Nikora et al. 1998 more research is still needed to

derivation of rolling and lifting probabilities. Also taken into con-
sideration is the dependence of the lift coefficient on particle Rey-
nolds number. The proposed lifting and rolling probabilities are
then verified with the published data. These two probabilities are
further incorporated with the rolling and lifting thresholds devel-
oped by Ling(1995 to demonstrate the inconsistency involved in
the calculation of critical shear stress.

Bed Grain Geometry

(@) (b)

Flow Flow Sphere 1
—_— —_—

0.25d
V/A\V/ £t
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Fig. 2. Longitudinal diagram X-y plane demonstratinga) lower limit and (b) upper limit of 3
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Fig. 3. Definition sketch showing transverse sectignZ plane of
exposed bed graifview into flow)

test its validity on the smooth and transitional beds. The probabil-
ity density function(pdf) of & is thus expressed as

1
f2®)= 5 i7a—(—o7m)  o.86a’
for —0.750<5=<0.111 (1)

Thresholds for Entrainment

The incipient motion of sediment occurs when the stability of a
particle is disturbed. Such instability can be attributed to the im-
balance of forces or force moments caused by the forces exerte
on the particle in the flowsee Ling 1995 Fig. 1 shows that the

Cp=(24R;)(1+0.15R5°%) ©)

where R, = particle Reynolds number defined Egd’/v, in

whichu, = area-averaged temporal mean velodity,= exposed
diameter of a particléshown in Fig. 3 =0.75d+398, v = kine-
matic viscosity of fluid. Eq.(3) is valid for R,<1,754, while
Cp=0.36 for Ry>1,754 in smooth-bed flowGraf 1973. Al-
thoughuy is used in Eq(2) to calculate the instantaneous drag

force, using the temporal mean velocity to evaluateCp, is a
necessarily simplified treatment of the problem. The lift coeffi-
cient is generally considered as an unknown functioRpf al-
though a number of experimental investigations have been carried
out (reviewed by Garde and Ranga Raju 1985; Wiberg and Smith
1985. The study of Chepi(1958 provides one of the most com-
plete sets of data, which indicates that the average ratio of lift to
drag is nearly constant at 0.85 for boundary Reynolds number
R*<5,000, whereR*=u,d'/v, u, = shear velocity=/1/p, T

= bed shear stress. This constant ratio of lift to drag was used by
Wiberg and Smith(1985 in their theoretical model of particle
saltation. The more recent work of Patnaik et(a994 appears
to demonstrate a decreasing trend of the lift-drag ratio Riftior
their test range of 4,060R,<60,000. Their data also show that
nearly all the lift-drag ratiogexcept 1 out of 12 dajaare within
the range of 0.5-1.5 foR,<<8,000. The aforementioned values
of the lift-drag ratio could be useful for the present study because
the condition oiRp< 8,000(i.e.,R*<1,000) corresponds to more
than 95% of the situations consideréshmple size= 3,000.
With the information implied from above, the ratio of lift to drag
is taken as unity in this study, which is equivalent to a condition
of C_ /Cp=1 given the definitions of drag and lift in Eq2).
Thus, the lift coefficient becomes an explicit functionRf, as
expressed by Eq3). However, the negative lift foR*<5 re-
ported by Davies and Samatl978 is not considered herein be-

ause the underflow beneath the sphere is assumed negligible for

mooth-bed flowgNikora et al. 2001

The mean velocity distribution in the wall regidie., the

external forces acting on Sphere 1 include the submerged Weigh'inner layer above the viscous sublayef the turbulent flow over

(W) and the instantaneous hydrodynamic forces, which can be
resolved into a drag forceFp) and a lift force E,). Various
forms of F|_ can be found in the literatur@.g., Naden 1987; Ling
1995; here we follow Cheng and Chie(998, 1999 to use the
conventional expressions for these forces, i.e.,

wd3
W=(ps—p)g—5~

pAUL

FD:C 2

D (2)
pAU,

L2

wherep andp, = densities of fluid and sediment particle, respec-

tively; g = gravitational acceleratiody = frontal area exposed to

the flow, shown in Fig. 3 {-z plane across the flowas the
noncrosshatched frontal area of Sphereu];= area-averaged

FL:C

a hydraulically smooth behs the sand bed shown in Fig.dan
be described by the logarithmic profitlean Rijn 1984; Nezu and
Nakagawa 1993

whereu = temporal mean velocity at a heightabove the bed
level; k = von Karman constant=0.4 for clear watery, =
zero-velocity level of the logarithmic profile k/30; andks =
equivalent sand roughness of Nikuradse. Note yas a virtual
zero-velocity level, the real zero-velocity level is locatedyat
=0 for smooth-bed flows. Thkg value should be set as @.%0
3d when Eq.(4) is used in turbulent flow over sand bedidge
and Bennett 1992; Ling 1995Again, to be consistent with the
preceding work of this papgiCheng and Chiew 1998; Wu and
Lin 2002, herein we assumk,=2d, which leads to a result of
yo=4d/15. The area-averaged velocity over the exposed frontal

1
—1In
K

y

u
u,

(4)

instantaneous velocity, defined as the averaging of streamwisesrega is defined by

velocity over the exposed frontal aréa(which will be specified
later in this sectiop Cp and C, = drag and lift coefficients,
respectively. The instantaneous velodity is used in Eq(2) to
account for the effect of fluctuating fluid forces. The drag coeffi-
cient of a sphere is known to depend upon flow conditions and
can be obtained by the following formu(&chiller and Naumann
1933:
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— [audA

U= A (5)

where the differential aredA=(d sinys)dy, as illustrated in Fig.
3. Since thats is a random variable, for a specif&; siny is
given by



sing=\1—cogy=2(y—38)(d—y+35)/d (6)

where cosy=[0.5d—(y—95)]/0.5d. Using the definitions ol A
andy,, and Egs.(4) and (6), one can rewrite Eq(5) as the
following:

fyz
— Y1

U,=

Uy

15y
Y2
fy V(y—3)(d—y+38)dy

wherey,=0.25d andy,=d+ 3 are the lower and upper limits of
integration, respectivelishown in Fig. 3. Eq.(7) is derived for a
given value ofd, henceu, can be expressed as a functiondof

Theu, value is used to solve E) for y, =y, X expkuy,/u,), in
which y,, is the height(from the bed levelwhere the mean flow

veIocityU=Ub (as illustrated in Fig. L Becausey, is determined

fromUb, theyy, value so obtained is also a function®fnd will
be used in the derivation of rolling threshold.

@)

Rolling Threshold
The threshold condition for rolling to begin is that the force mo-

fu(Us)

PR = P(BR<Ub<B|_)
PL= P(us>BL)

el

0 BR B|_ Up

Fig. 4. Schematic diagram showing probability density function of
u, and definitions of rolling and lifting probabilities

Lp=Yyp,—0.125-0.5 (11)

On the other hand, the identical value lof andL,y is equal to

0.5dXsin¢. Since that co&=(0.5d+38+0.25)/d=0.75
+(8/d), one obtains the following:

L ,=Lw=0.5dy/1—[0.75+(8/d)]? (12)

Egs.(11) and(12) imply that all the moment arm@.e.,Lp, L, ,
andL,,) are dependent upon the valueof

ments causing the particle motion exceed those keeping the par-

ticle at rest. Such a condition can be expressed as

FpLp+F L >WLy (8)

whereLp, L, , andLy=moment armgaboutC) of Fy, F_, and
W respectively(as shown in Fig. 1 Combination of Eqs(2) and
(8) leads to the following:

uz>B3

©

Lifting Threshold

The threshold condition for lifting to occur is that the dynamic lift
on a sediment particle exceeds its submerged weight, which can

be represented by
FL>wW (13)

Employing the definitions given in Eq2), one can rewrite Eq.

whereBg denotes the rolling threshold and can be expressed by (13) as

B _\/ 2Lw md® ye—vy
R™ CDLD+C|_L|_ 6_A p

wherey andvy = specific weights of fluid and sediment, respec-
tively. Sphere 1 will start to move in the rolling mode when the
inequality in Eq.(9) is satisfied.

As illustrated in Fig. 1, the submerged weigMacts on the
center of Sphere 1 in the downward direction. The lift foFgeis
perpendicular to the flow directiofie., in the upward direction
previous studies have generally assumed Ehatcts on a line
passing through the center of Sphere 1. The drag fBfcacts in

(10)

the flow direction, however, to date there is no general consensus

regarding the position wheré, applies on Sphere 1. It is indi-

cated in the literature that the height of effective drag is normally

taken as 0.8 to 0.7 above the bed levelackson 1981; Bridge
and Bennett 1992 varying with the location selected as the the-

uz>B? (14)

whereB, denotes the lifting threshold, which can be expressed as

B [2 md® ys—y

=NTEA

Sphere 1 will initiate its motion in the lifting mode when the
criterion given in Eq(14) is met.

To further compare the rolling and lifting thresholds, we use

Egs. (10) and (15) to evaluate the ratio of the two thresholds.
SinceC_ =Cp, this ratio becomes

Br

B, Vip+ |—L<

Eqg. (16) indicates that the entrainment threshold for lifting is
higher than that for rolling, which coincides with the result ob-

(15)

(16)

oretical bed level. The height of effective fluid drag must be a tained by Ling(1995. With the two thresholds identified in this
quantity that depends upon the local velocity profile and the pro- section and the probability distribution of the instantaneous ve-
trusion hEIght Of the pal‘tIC|e The theoretlca| Value Of thIS he|ght |0c|ty to be Specified Subsequently’ the probabilities for entrain_
can be obtained through integrations of the local drag and the ment can be defined precisely.

associated moment over the grain surfdesy., Jackson 1981

which would not be practical for the present study because the

mean drad-p is calculated from the area-averaged velocity

Probabilities for Entrainment

Nevertheless, the height of mean drag can be evaluated reason-

ably well with the assumption th&t, acts on the level where the

mean velocityu=u,, sinceUb is a function of velocity profile
and protrusion height. In other words, tiig value gained in the

In a recent comparative study, Wu and L@002 have shown

that the instantaneous velocity, follows the log-normal distri-

bution rather than normgthe pdf ofu, is schematically illus-

preceding subsection can be taken as the height of effective dragrated in Fig. 4. If v, denotes the logarithm ofi, (i.e., vy,

(as shown in Fig. 1 which directly results in.p=y,—h. Given
thath=0.1251+0.55, one can evaluate, by

=Inu, for 0<up<<), the pdf ofv, can be represented by a
Gaussian distribution, i.e.,
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fy(vp) =

17

1 p[ (vp—vp)?
exg ————

\/%O'U 20‘5
wherev, ando, = mean and standard deviation wf, respec-
tively. Becausauy, is a hon-negative variable, the threshold con-
ditions demonstrated in Eq&9) and (14) can be modified as,,
>Bg for rolling and u,>B,_ for lifting. Accordingly, if Bg<<uy
<B_, the particle will be entrained in a pure rolling mode while
still keeping in contact with the bed spheres. Howevenyjfis
greater thamB,_, the incipient motion of the particle will occur in
a simultaneous rolling-lifting mode. In other words, the particle is
lifted off the bed while it starts to roll. Because the lifted particle

is no longer in contact with the spheres below it, herein we iden-

tify this type of entrainmenti.e., foru,>B, ) as the lifting mode.
Based on these, it is now possible to define the rolling and lifting
probabilities.

Rolling Probability

The probability of entrainment in the rolling mode can be ex-
pressed by the followingschematically illustrated in Fig.)4

Pr=P(Br<up,<B_)=P(Bi<vp<B|)
=P(vb<BL)—P(vb<B,’Q) (18)

where B; and B/ =InBg and InB_, respectively. Because,, is

normally distributed, one can use the approximation presented in

Cheng and Chiew1998 and rewrite Eq(18) as

B, ' B_'
PRZJ - fv(vb)dvb_f : fv(vb)dvb

v B’
U ", (vp)dup+ f: f,(vp)duy

_[fvbfu(vb)dvb"‘ J'_BR,fu(vb)dvb}
. o

1] B vy \/ 2(B] ~vp)?
=3 —\/1l-exg ————
2 |B| —vp| 1T0'5
R~ Vb 2(Bg—vp)?
- R \J1exd - (19)
|B|'Q—vb| o,

in WhiChv_b ando, can be determined by the following formulas
(Wu and Lin 2002

vp=In[up/V1+ (0, /up)?]

o2=In[1+ (o /up)?]

(20)

whereo, = standard deviation afy, . According to Kironoto and
Graf (1994 and Cheng and Chle\(\A998 a linear relationship

betweero andu,J is given byo ,=0. 37Ub, which transforms Eq.
(20) into

vp=In(uy/1.066 21)
02=0.128

To proceed with the derivation of rolling probability, we rewrite
Egs.(7), (10), and(15) as the following:
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—In( ”\/ (y=3)(d—y+3d)dy

Y2
u, X

Uy= =u, XH
J’\/(y—B)(d—erB)dy
y
1 (22)
2Ly wd? (ys—y)d \/ (vys—y)d
Br= \/CDLD+C L 6A JrX K=
(23)
2 mwd? (ys—v)d \/ (ys—y)d
BL—\/CL Ay VXK (24)

where H = dimensionless function o as given in Eq.(22);
while K=7d?6A, Jg=2L/(CpLp+C,L,), andJ, =2/C, are
all dimensionless and varying with Substituting Eqs(21)—(24)
into Eq. (19) results in

_In(1.137 LK/H?20)
|In(1 137, K/H?9)|

e 2

_ IN(1.137TxrK/H29)

7]In(1.13TgK/H20)|
In(1.130-gK/H?0
( )} ] (25)

\/l eXp[ 0.358

wherePg(3) = rolling probability for a giverd; 6 = dimension-
less shear streg®r Shields parametedefined asr/(ys—+vy)d.

Recall that is a uniform random variable between0.75d and
0.116, the mean probability of rollingR) is simply the ex-
pected value of Eq25), i.e.,

Pgr(3)=0.

0.358

In(1.137, K/Hze)} ]

fO.llﬁi 1 JO.llﬁj
PR= Pr(3)fA(8)dd= =757 PRr(3)dd
075 R( ) A( ) 0.8641 o7 R( )

1 (0116
- 0.866f Lorg RO

whered’=8/d = dimensionless dummy variable, aRg(d') =
nondimensionalized form of E(25). Eq. (26) is then solved
numerically for evaluating the rolling probabilities corresponding
to a range of (between 102 and 18 in this study.

(26)

Lifting Probability

The probability of entrainment in the lifting mode can be ex-
pressed as the followin@llustrated in Fig. 4

P .=P(u,>B|)=P(vp,>B|)=1-P(—o<v,<B|) (27)

Following the same procedures used in E®), one can reform
Eq. (27) as

PL=1[J f (Ub)dvb+jBL’f (ub)dvb}

Z(BL Ub)
=0.5—-0. 5—

i
LUb| F{ 5

Similarly, substituting Eqs(21), (22), and (24) into Eq. (28)
yields

(28)
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Fig. 5. Relationships between entrainment probabilities and dimen-
sionless shear stress

EIn(l.lSZJLK/Hze)
“|In(1.137,K/H29)|
In(1.137 K/H?20)

2 2
x \/1_ exp{ T 0.358 ] (29)

whereP | (8) = lifting probability for a specific value 08. The
mean probability of lifting PL) is taken as the expected value of
Eq. (29), i.e.,

PL(3)=0.5-0

0.116

Jo.llﬁi J

PL= PL(d)-fA(8)dd= =5 PL(87)dd’
075 L( ) A( ) 0.866 o075 L( )

(30)

whereP(3’) = nondimensionalized form of E¢29). Eq. (30)
is also solved numerically to evaluate the lifting probabilities cor-
responding to a range ®f between 102 and 10.

Results and Discussion

Verification of Results

Table 1. Euclidean Norms and Coefficients of Determination for
Results from Different Studie@Percentage of Change from Earlier
Result is in Brackets

Previous study

Source (Wu and Lin 2002 This study
=[P 0.266 0.245—8%]
R? 0.966 0.9701+0.5%

probability for8~1. To quantitatively explore the improved ac-
curacy, the Euclidean norm is used as a measure to represent the
overall error between the theoretical and experimental results
(Conte and de Boor 1980The Euclidean norm is defined as

n

> &

i=1

lef2=

where ¢ = difference between théh data and the theoretical
value;n = total number of the experimental data. The magnitudes
of the Euclidean norm and the coefficient of determinafSrfor

the earlier result of Wu and Lif2002 and the present result are
listed in Table 1. The values d&l|, andR? for the result of Wu

and Lin are 0.266 and 0.966, respectively, whereas the corre-
sponding values for the present result are 0.245 and 0.971. The
percentages of the reducke|, and the improvedr? are about 8
and 0.5%, respectively. In contrast to the previous work of Wu
and Lin (2002, the present study incorporates the probabilistic
feature of the initial bed geometryn addition to the turbulent
velocity fluctuation and also the dependence of lift coefficient on
flow condition (whereas a constant lift coefficie@t =0.21 was
used by Wu and Lin The improved accuracy is believed to origi-
nate from these additional considerations.

Second, the rolling and lifting probabilities are compared with
the qualitative observations of Drake et @988. Their observa-
tions were made by motion-picture photography at Duck Creek, a
clear stream 6.5 m wide and 35 cm deep near Pinedale, Wyoming.
Bed-shear stress was approximately 6 Pa. The streambed is hy-
draulically transitional, consisting of fine gravels with a median
diameter of 4 mm. The transport of sediment was almost entirely
as bed load. The recorded plan and side views of the motion of
individual bed load particles indicated that rolling was the most
common mode of entrainment for particles larger than about 3
mm, whereas lifting was the mode of entrainment for most bed
load particles smaller than about 2 mm. The reported bed-shear
stress(i.e., 6 Pa and particle diameters correspond to the values
of 6=0.12 (for d=3 mm) and 6 =0.18 (for d=2 mm), respec-

(31)

The relationships between the computed results and the dimen-ively. In other words, wher®<0.12, rolling is the commonest

sionless shear stresare demonstrated in Fig. 5, where one can
see the distinct difference between the lifting and rolling prob-
abilities. The lifting probabilityPL increases monotonously with
0, whereas the rolling probabilitf’R increases with in the
region of6 <0.15 but then reduces for larger valuesofin what
follows, we verify these results with the published data. First, the
lifting probabilities reported by Guy et al1966, Luque (1974,
Jain (1992, and Papanicolao(l999 are used for comparison
with the calculatedPL. Fig. 5 reveals that the computed result of

PL agrees generally well with the published data. The discrepan-

mode of entrainment, whereas for-0.18, lifting is the dominant
mode of entrainment. Clearly demonstrated in Fig. 5 is that the
rolling probability is greater than the lifting probability in the
region of6 <0.12; however, the lifting probability becomes much
greater than the rolling probability fa#>0.18. The results ob-
tained in this study coincide very well with the observations made
by Drake et al.(1989 and are physically meaningful. In fact,
such a coincidence can be reasonably interpreted because when
the values o are sufficiently high(i.e., for very larger values

or very smalld values, there is a strong tendency that particles

cies present at the upper end are probably due to the observeavill be entrained in the lifting(i.e., rolling-lifting) mode rather

flow-retardation(or drag-reductioneffect caused by the impact
on the near-bed flow of the increasing particles in motion at
higher6 values(McEwan 2002. The lifting probability from Wu
and Lin (2002 is also presented in Fig. 5 to demonstrate the
improvement made in the current study. The earlier result of Wu
and Lin (2002 displays a substantial overestimation of lifting

than the pure rolling mode. On the other hand, when the magni-
tudes off are appreciably low(i.e., for negligibler values or
extremely larged values, the particles will most likely stay in
repose rather than move. As such, the probability of entrainment
in the rolling mode becomes vanishing small at both very high
and low values of).
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Total Probability of Incipient Motion L 310

As mentioned earlier, various forms of entrainment probabilities | Critical Lifing Probabilty
(such as rolling, lifting, and sliding probabilitiehave been used

in the stochastic bed load models. We have come to know that the
entrainment of sediment occurs mainly in the rolling and lifting
modes. It is revealed in Fig. 5 that for a given valuefofthere

are always two possible modes of entrainment, regardless of
which one is more likely to occur. Thus, instead of using a single
rolling or lifting probability, it is more reasonable to use the total
probability of entrainmentinclusive of both rolling and liftingin

the modeling of bed load transport. Because rolling and lifting are B et N
mutually independent modes according to our definitasillus- [ fCrical Roling Probabilly o
trated in Fig. 4, the total probability of incipient motionR),) is o L e, e i g
equal to the summation of rolling and lifting probabilities, i.e., 0.1 1 10 100 1000
Pu=Pgr+P_. Taking the expected value &f,, over the entire
range ofd yields

o
@
T

o
o
T

Smooth Transitional

Lifting Threshold, & cL
{Ling, 1995)

Critical Entrainment Probability
o
K

Rolling Threshold, & cr .-~
(Ling, 1995)

o
N

29 ‘ssallg IBOYS [RONUD) SSAIUOISUDSLIK]

Critical Boundary Reynolds Number, Re*

Fig. 6. Variations of dimensionless critical shear stresses and critical
PM=PR+PL (32) entrainment probabilities with critical boundary Reynolds number

where PM = mean total probability of entrainment. THeM
curve resulting from the superimposition BR andPL curves is N ) o
shown in Fig. 5. It is found that the rolling probability makes up Critical Entrainment Probabilities

more than 90% of the total entrainment probability for &y  So far we have acquired the relations quantifying the variations of
value less than about 0.05, while the lifting probability occupies pR and PL with 6. Further, we are interested in the probability
more than 90% of the total entrainment probability for &y  of entrainment corresponding to the condition that the applied
value greater than about 0.6. Hence, for the regiong<00.05 shear stress equals to the threshold shear stress for incipient mo-
and6>0.6,PRandPL can be used, respectively, as the approxi- tjon, i.e., 6=6., in which 6. = dimensionless critical shear
mations toP M. However, for they values in the range between  stress. Gesslé.971) reported a 50% probability of movement in
0.05 and 0.6, the contributions of both probabilities to the total rough turbulent flow WhemC (based OrdSO) was app“ed to the
probability of entrainment should be equally weighted. bed particles. The entrainment probabilities at the critical condi-
tions can be evaluated with the aid of the rolling and lifting
thresholds developed by Lin@l995. His criteria for incipient
motion can be presented in a graphical format similar to Shields
The entrainment probabilities developed in this study are appli- diagram, i.e.f. versus critical boundary Reynolds numirRf
cable to many aspects involving the predictions of bed load (&s shown in Fig. 6 He found that the Shields curve for the most
movement in natural channels. For example, the stochastic bedPart lies between the two theoretical thresholds. For a given value
load models based on the single-mode entrainment probabilities,0f R¢ , the corresponding rolling and lifting thresholds., 6.
such as those of Einsteif1950, Paintal (1971, and Sun and and 6.) can be determined from the two separate criteria for
Donahue (2000, can be modified using the total entrainment incipient motion. The values df.z and6._ are then incorporated
probability. Given the multiple modes associated with the initial With the proposed®PR—6 and PL—#6 relations (or Fig. 9 to
motion of bed load particles, it is not surprising that some of the evaluate the critical rolling and lifting probabilities, respectively.
predictions based on a single entrainment mode have displayedl'he results so obtained are shown in Fig. 6, where the entrain-
considerable errors. The discrepancies between the predicted anfent probabilities corresponding to the critical conditions dem-
measured results are often reduced through the calibration proceonstrate considerable variations in the magnitude, especially for
dures. However, the modifications resulting from such proceduresthe critical lifting probability. The maximum and minimum values
can be rather limited. Hence, a significant improvement may be of the critical lifting probability are 1.0 and 0.05, respectively,
expected if a more reliable entrainment probability is incorpo- While the critical rolling probability ranges from 0.008 to 0.2. The
rated into the stochastic modeling of bed load transport. critical lifting probability drops drastically from about 0.8 to 0.05
In addition, the partitioning approach for the sediment entrain- as Rg increases from 1 to 10. FdRg >10, the critical lifting
ment into a rolling and lifting mode can be useful to the river probability increases modestly from 0.05 to 0.16. On the other
managers in planning of the flushing flows for restoring the hand, the critical rolling probability remains approximately con-
salmonid incubation habitat degraded by fine sediment intrusion stant within the range between 0.01 and 0.04Rpr 10, but then
(Wu 2000. For the flushing flows to be effective, the removal of increases to about 0.2 & increases from 10 to 500. For hy-
fine matrix material should be enhanced to improve the quality of drodynamically smooth boundarieR{<2), both of the critical
aquatic habitat as much as possible, whereas the movement oéntrainment probabilities display decreasing trends with the in-
coarse framework material should be limited to reduce the loss of creasing Ry . However, in the transitional regime {R?
coarse material and to maintain a stable framework of habitat for <500), both of the critical entrainment probabilities demonstrate
the incubating embryos. The proposed entrainment probability transitions from descending to ascending trends. These trends of
versus Shields parameter relations may be used to determine the@ariation appear to correlate with the criteria for incipient motion.
optimal flushing flow so that fine sediment can be lifted off the Note that in Fig. 6 the rolling threshold and the critical rolling
bed without causing significant disturbances to the coarse frame-probability are nearly parallel over the entire rangdr§f despite
work material. Further studies are currently undertaken by the that they are in different graphical scalé®., logarithmic and
writers to address this challenging issue. linear scales, respectivglyln summary, the probabilities of en-

Potential Applications
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trainment corresponding to the critical rolling and lifting condi- size distribution, availability or abundance, number of particles in
tions are neither constant values nor monotonous functions of motion), bed geometrye.g., slope, roughnessaind other random
Ry . Their variation trends agree with those of the entrainment factors on the probabilities of sediment entrainment.
thresholds.

A comment on the results is given below. If the critical shear
stress is a distinct threshold for incipient motion of the sediment, Acknowledgments
there must be a consistent probability of entrainment correspond-

ing to such a critical condition. For example, a 50% probability of Funding of this research was granted by the National Science
movement at the critical conditions as proposed by Gessler Council, Republic of ChindNSC-90-2211-E-002-085The writ-
(1971. However, the results gained in the present study do not ers appreciate the insightful comments and constructive sugges-

support such an argument, in terms of both rolling and lifting tions offered by three anonymous reviewers, which have been
modes of entrainment. It is revealed that even when the thresholdincorporated into the final version of this paper.

shear stress is applied to the sediment particle, the entrainment
probability is a highly variable function of the hydrodynamic

boundary condition, rather than a meaningful value representingngtation
the critical state of particle entrainment. Since the probabilities of
entrainment corresponding to the so called “critical conditions”
vary over such a wide range, a possible explanation would be that
there is no such thing as “critical shear stress,” as pointed out by
many investigatorgsee review by McEwan and Heald 200The
results of this study appear to imply the inconsistency embedded B’ B. = InB and InBx:

in the conventional definition of the critical shear stress for in- CL’ CR _ draé and lift Eé)efficientS'
cipient motion, thus probably provide a different perspective D> a — diameter of particle; '

worth further investigations. d’ = exposed diameter of particle;
dso = median grain size;
lel, = Euclidean norm of error;

The following symbols are used in this paper:
A = frontal area exposed to the flow;
B_, Bg = lifting and rolling thresholds defined by Egs.
(15) and (10);

Conclusions Fp, F. = instantaneous drag and lift forces;

In this paper, we present the theoretical formulation of the rolling f,(v,) = probability density functior(pdf) of vy ;

and lifting probabilities for sediment entrainment in hydraulically f,(8) = probability density functior(pdf) of 3;
smooth and transitional flows. The stochastic natures of turbulent g = gravitational acceleration;

fluctuation and bed grain irregularity are both considered in the H = dimensionless function d:

present study. The results obtained herein represent an extended h = vertical distance from bed level to point of
version of the earlier pickup probabilitie€heng and Chiew contactC:

1998; Wu and Lin 200Rthat only considered the fluctuation of J, = 2[C.;

turbulent flow. Modification of the previous studies is also made Jr = 2Lw/(Cplp+CLLy);

with the inclusion of a relation between lift coefficient and par- K = wd?/6A:

ticle Reynolds number. However, the effect of turbulent bursting ke = equivalent roughness height of Nikuradse;
has not been included in this paper. It is believed that the entrain-|_ |, , L,, = moment armgaboutC) of Fp, F,, andW:
ment of sediment is sensitive to the periodic burst evens. To in- P(X) = probability of eventX;

clude the bursting effect explicitly in future formulation of the p (3), P(5)

entrainment probability would be a challenging task. In this study, = lifting and rolling probabilities for giverd:
the theoretically identified thresholds for entrainment make it pos- p, (5'), Px(5’)

sible to precisely define the rolling and lifting probabilities. The = nondimensionalized forms ¢#,_(8) and
results show that the lifting probabilitgranging from 0 to 1 Pr(3);

increases monotonously with the dimensionless shear siress  p,, or P,,(5)

whereas the rolling probabilitranging from 0 to 0.2bdisplays total probability of incipient motiorfor a

an increasing trend far<<0.15 yet a decreasing trend for larger givend);

values. Both of the rolling and lifting probabilities coincide well PL, PR = mean probabilities of liting and rolling;
with the pUb'IShed data, qua.ntitat.ively. and qualitatively. More- PM = mean total probab|||'[y of entrainment;
over, the lifting probablll_ty gained in thls study demonstrates an R, = particle Reynolds numbeFU,)d’/v;
improved agreement with the experimental data. For €®5 R* = boundary Reynolds numberu, d’/v;

< 0.6, the summation of rolling and lifting probabilities is recom- R* = critical boundary Reynolds nu*mber"
mended for use as the total probability of incipient motion. How- R°z = coefficient of determination: '

ever, for 6 less than 0.050r greater than 0)6 the rolling (or

lifting) probability can be used as the approximation to the total
entrainment probability. The critical entrainment probabilities are
highly variable functions of the boundary Reynolds number, thus
no consistent probability corresponding to the critical state of

u, = area-averaged instantaneous velocity ap-
proaching particle;
u, = shear velocity=\r/p;
u = temporal mean velocity at heigltabove

particle entrainment can be found. The results of this study appear _ bed level;

to imply the inconsistency involved in the conventional definition up, = area-averaged mean flow velocity;

of critical shear stress. Future research is needed to further ad- vp = Inup;

dress this issue and to investigate the influences of turbulence v, = mean value oby,;

(e.g., intensity, bursting sediment characteristic®.g., shape, W = submerged weight of sediment particle;
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x = coordinates in longitudinal direction;
y = coordinates in vertical direction;
Yo = height from bed level whera=uy;
Yo = zero-velocity level;
Y1, Yo = lower and upper limits of integration in Eq.
(),
z = coordinates in transverse direction;
v, ¥s = specific weights of fluid and sediment;
d = vertical distance from bed level to bottom
of Sphere 1;
d' = d/d,
0 = dimensionless shear stre&hields param-
ete) =1/(ys—)d;
6. = dimensionless critical shear stress;

0., 6.r = dimensionless threshold shear stresses for
lifting and rolling;
= von Kaman constant;

K =
v = kinematic viscosity of fluid;
p, ps = densities of fluid and sediment;
oy, 0, = standard deviations af, andv,; and
T = bed shear stress.
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