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TECHNICAL NOTES
Pickup Probability of Sediment under Log-Normal
Velocity Distribution
Fu-Chun Wu1 and Yao-Cheng Lin2

Abstract: This work presents the formulation of the pickup probability for sediment entrainment under the log-normally distr
instantaneous velocity. Herein two mathematical approaches, namely the analytical method and the first-order approximation m
employed in the theoretical derivation. The results are compared with the published experimental data and the previous pickup p
derived for the normal velocity distribution. The outcome appears to indicate that the pickup probabilities resulting from t
mathematical methods are of the same order of accuracy if the optimal lift coefficients are used. The error analysis implies that t
for the log-normal distribution reveal a significant improvement of accuracy over that for the normal distribution. The overall im
ment exceeds 50%.
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Introduction

Stochastic methods have long been applied to modeling the
draulics of open-channel flow and sediment transport~Papanico-
laou 1999b!. For the past several decades, despite the impro
knowledge gained in the area of stochastic hydraulics, there
remains much space for advancement in practical modeling.
instance, the initial entrainment and motion of sediment partic
is generally believed to constitute a stochastic process. The
stantaneous shear stress, drag, and lift forces induced by the
poral fluctuations of turbulent flow appear to be the main c
tributors to the stochastic nature of the sediment entrainm
problem. Incorporating this concept into his analysis, Einst
~1950! used the pickup probability to derive the bed load fun
tion. He defined the pickup probability as the probability of t
dynamic lift on a sediment particle being greater than its s
merged weight. When such a state is reached, there is a prob
ity that a sediment particle resting on the bed will start to move
the lifting mode. Hence Einstein’s pickup probability essentia
represents the lifting probability of a sediment particle. In fa
depending on the characteristics of a near-bed flow, the incip
motion of a sediment particle can occur in either one of the
lowing modes, namely, rolling, sliding, or lifting~Cheng and
Chiew 1999; Papanicolaou 1999a!. Several works have been d
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rected toward the calculation of pickup probability. Sun et
~1997! considered the probability distributions of the momen
caused by the drag, lift, and submerged weight to develop a p
ability equation for particle rolling. Cheng and Chiew~1998! pre-
sented a theoretical formulation of the lifting probability.

Following Einstein’s definition, Cheng and Chiew~1998! ex-
pressed the pickup probability for sediment entrainment in a
draulically rough flow as the following:

P5P~FL.W!5P~ub
2.B2!5P~ub.B!1P~ub,2B! (1)

where FL5instantaneous lift force acting on a particle5
CL(pd2/4)(rub

2/2), in which CL5lift coefficient ~typically be-
tween 0.1 and 0.4!, ub5instantaneous velocity approaching th
particle on the bed,d5particle diameter, andr5density of fluid;
W5submerged weight of the particle5(rs2r)g(pd3/6), in
which rs5density of sediment particle andg5gravitational accel-
eration; B5A4Dgd/3CL, in which D5(rs2r)/r. For a fully
turbulent flow, the lift coefficientCL is a function of particle
shape~Benedict and Christensen 1972! but is independent of the
Reynolds number~Coleman 1967!. By assuming that the prob
ability density function~pdf! of ub obeys the normal distribution
and employing the experimental mean valueūb55.52u* ~where
u* 5shear velocity! and the standard deviation~or turbulence in-
tensity! su52.0u* , Cheng and Chiew~1998! obtained the fol-
lowing expression for pickup probability:

P5120.5
0.212AuCL

u0.212AuCLu
A12expF2S 0.46

AuCL

22.2D 2G
20.5A12expF2S 0.46

AuCL

12.2D 2G (2)

where u5dimensionless shear stress5u
*
2 /(Dgd). Eq. ~2! indi-

cates that the pickup probability is only dependent onu if CL is
known. Cheng and Chiew~1998! selected a value of 0.25 forCL

to best fit the reported experimental data. They further compa
Eq. ~2! with the theoretical formula by Einstein~1950! and the
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empirical equation by Fredsoe and Deigaard~1992!. The results
reveal that Einstein’s formula consistently overpredicts the pic
probability, and Fredsoe–Deigaard’s equation gives meanin
results only foru.0.045 and underestimates the pickup proba
ity for u.0.1, whereas Eq.~2! tends to underestimate and ove
estimate the pickup probability foru,0.07 andu.0.07, respec-
tively.

The discrepancies between the measured data and Eq.~2! may
be attributed to the differences in grain geometry~Naden 1987!,
sediment availability~Church 1978!, and bed roughness~Papani-
colaou et al. 2001!, among several others. However, we tend
believe that the Gaussian assumption onub is a main factor be-
cause most of the experiments used for verification were c
ducted under the conditions similar to those for which Eq.~2! is
derived. Moreover, previous investigators~Christensen 1965
Yalin 1977! have pointed out that the component of velocity flu
tuation in rough turbulent flows follows the normal distributio
with a zero mean yet the streamwise instantaneous velocit
more likely to be characterized by the log-normal distributi
~Lopez and Garcia 2001!. In fact, the log-normal distribution is
physically reasonable for the instantaneous velocity because
approaching velocity in the longitudinal direction should be
positive magnitude, which is evidenced by Nelson et al.~1995!.
The objective of this study is to revise Eq.~2! with the log-
normally distributed instantaneous velocity. To this end we e
ploy two mathematical approaches to formulate the new pic
probability. An error analysis is also conducted to show the
proved accuracy of the results obtained in the present study.

Revised Pickup Probability

As the instantaneous velocityub obeys the log-normal law for 0
,ub,`, the logarithm ofub is normally distributed as shown in
Fig. 1. If vb denotes the logarithm ofub ~i.e., vb5 ln ub!, the pdf
of vb can be expressed by

f v~vb!5
1

A2psv

expF2
~vb2 v̄b!2

2sv
2 G (3)

wherev̄b andsv5the mean and standard deviation ofvb , respec-
tively. The pickup probability given in Eq.~1! should be modified
as the following:

P5P~ub.B!5P~vb.B8!512P~2`,vb,B8! (4)

in which B85 ln B. According to the procedures presented
Cheng and Chiew~1998!, one can rewrite Eq.~4! as

P512F E
2`

v̄b

f v~vb!dvb1E
v̄b

B8
f v~vb!dvbG

50.520.5
B82 v̄b

uB82 v̄buA12expF2
2~B82 v̄b!2

psv
2 G (5)

To use Eq.~5! for calculating the pickup probability, one need
the mean and the standard deviation in the normal domain~i.e.,
v̄b andsv , respectively!. However, the information that the tim
average valueūb55.52u* and the turbulence intensitysu

52.0u* is valid for the original~i.e., log-normal! domain. Thus
the task to be undertaken is to transform the given values oūb

and su into v̄b and sv . Herein two methods are used for th
transformation, namely, the analytical method and the first-or
approximation method. They are described below.
l

-

e

Analytical Method

If X is a random variable whose logarithmY is normally distrib-
uted, it can be shown that both the mean value and the varianc
Y vary as a function of the mean and the variance ofX ~see
Appendix I!, i.e.,

E@Y#5 ln~E@X#/A11V@X#/E2@X# ! (6a)

V@Y#5 ln~11V@X#/E2@X# ! (6b)

where Y5 ln X; E@X# and V@X#, and E@Y# and V@Y# are the
mean value and the variance ofX andY, respectively. Replacing
E@X# andV@X# in Eqs.~6a! and ~6b! with the values ofūb and
su

2 yields v̄b5 ln(5.19u* ) andsv
250.123. Substitution ofv̄b and

sv
2 into Eq.~5! results in a revised form of the pickup probabilit

P50.520.5
ln~0.049/uCL!

u ln~0.049/uCL!u A12expH 2
2

p F ln~0.049/uCL!

0.702 G2J
(7)

First-Order Approximation Method

Let X be a random variable whose mean valueE@X#5j andY be
a mathematical function ofX, i.e., Y5f(X). With the first-order
Taylor series expansion, it has been shown that the mean an
variance ofY can be approximated by the following expressio
~see Appendix II!:

E@Y#5f~j! (8a)

V@Y#5@f8~j!#2
•V@X# (8b)

Fig. 1. Schematic diagram showing the transformation of pick
probability between log-normal and normal distributions
JOURNAL OF HYDRAULIC ENGINEERING / APRIL 2002 / 439
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Settingf(X)5 ln X and replacingj and V@X# in Eqs. ~8a! and
~8b! with the values ofūb andsu

2 gives v̄b5 ln(5.52u* ) andsv
2

50.131. Substitutingv̄b andsv
2 into Eq. ~5! leads to the follow-

ing formula for pickup probability

P50.520.5
ln~0.044/uCL!

u ln~0.044/uCL!u A12expH 2
2

p F ln~0.044/uCL!

0.724 G2J
(9)

Eqs.~7! and~9! both indicate that, for a given lift coefficientCL ,
the pickup probability is only dependent on the dimensionl
shear stressu.

Results and Discussion

For comparison, the results of Eqs.~2!, ~7!, and~9! as well as the
published experimental data~Guy et al. 1966; Luque 1974; Jai
1992; Papanicolaou 1999a! are demonstrated in Fig. 2. Given th
the CL value used by Cheng and Chiew~1998! was based on
curve fitting, herein we select appropriateCL values to best fit the
experimental data. The optimalCL values for Eqs.~7! and~9! are
0.21 and 0.18, respectively. The former is close to theCL value
selected by Cheng and Chiew~1998! ~i.e., 0.25! and the latter is
very close to the constant value~i.e., 0.178! used by Einstein and
El-Samni ~1949! for the flow velocity measured at 0.35d above
the theoretical bed level. Later we will also show that the lo
normal velocity distribution performs better than the normal d
tribution even if the sameCL value~50.25! is used for Eqs.~2!,
~7!, and~9!. In Fig. 2, one can see that the results of Eqs.~7! and

Fig. 2. Comparison of theoretical pickup probabilities with expe
mental data. The optimalCL values for log-normal~analytical and
first-order approximation methods! and normal distributions are 0.21
0.18, and 0.25, respectively.
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~9! are almost identical and in better agreement with the exp
mental data than Eq.~2!. To quantitatively investigate the im
proved accuracy, the Euclidean norm is used as a measu
represent the overall error between the theoretical and experim
tal results ~Conte and de Boor 1980!. The Euclidean norm is
defined as

iei25A(
i 51

n

ei
2 (10)

whereei5the difference between theith data and the theoretica
value, andn5the total number of the experimental data. The ma
nitudes of the Euclidean norm and the coefficient of determi
tion R2 for Eqs.~2!, ~7!, and~9! are listed in Table 1, where on
may notice that the values ofiei2 andR2 for Eqs.~7! and~9! are
identical~i.e., 0.266 and 0.966, respectively! when the optimalCL

values are used. This appears to imply that the pickup proba
ties resulting from the analytical and the first-order approximat
methods are of the same order of accuracy in case the approp
lift coefficients can be adopted. Theiei2 value for Eq.~2! reaches
0.541, which is much greater than that value for Eqs.~7! and~9!
~i.e., 0.266!. TheR2 value for Eq.~2! ~i.e., 0.858! is substantially
lower than that value for Eqs.~7! and ~9! ~i.e., 0.966!. In sum-
mary, the results for the log-normal velocity distribution revea
significant improvement of accuracy over that for the normal d
tribution. The outcome of the current study indicates that
overall percentage of improvement is at the level of 51%. On
other hand, when the sameCL value ~i.e., 0.25! is used, the cor-
respondingiei2 values for Eqs.~7! and ~9! are 0.432 and 0.794
while the correspondingR2 values are 0.910 and 0.807. The pe
formance of the log-normal distribution is still superior to that
the normal distribution, although the first-order approximation
not as good as the analytical method. The claim made her
based on the comparison with the experimental data. Curre
the available data are limited, especially for the range of h
shear stress. Thus more data are needed for validation befo
general conclusion can be drawn.

Conclusions

In this study we revised the pickup probability of sediment e
trainment with the log-normal velocity distribution. Two math
ematical approaches~i.e., the analytical and the first-order ap
proximation methods! were used for the formulation of the picku
probability. The modified results were compared with the exp
mental data and the previous pickup probability derived for
normal velocity distribution. It is shown that the accuracy of t
results gained from the analytical and the first-order approxim
tion methods is nearly identical in case the optimal lift coef
cients are used. The error analysis also indicates that the mod
results for the log-normal distribution reveal a significant im
provement over that for the normal distribution. The overall i
provement of the accuracy exceeds 50%. In the present stud
Table 1. Euclidean Norm and Coefficient of Determination for Different Probability Distributions

Probability distribution

Log-normal

Normal @Eq. ~2!#Analytical @Eq. ~7!# First-order Approximation@Eq. ~9!#

CL50.21 CL50.25 CL50.18 CL50.25 CL50.25

iei2 0.266 0.432 0.266 0.794 0.541
R2 0.966 0.910 0.966 0.807 0.858
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optimal choice of theCL value for sediment entrainment is bas
on the best fitting to the experimental data. However, the dep
dence of theCL value on the flow condition and grain geomet
~such as particle shape and grading of nonuniform sediment! is of
great importance and remains to be investigated in a future st

Appendix I. Derivation of Eq. „6…

Given that E@Y#5h and V@Y#5s2, the pdf of Y can be ex-
pressed as

f Y~y!5
1

A2ps
expF2

~y2h!2

2s2 G for 2`,y,` (11)

SinceY5f(X)5 ln X, one can obtain the pdf ofX by the chain
rule and Eq.~11!, i.e.,

f X~x!5 f Y@f~x!#
d@f~x!#

dx

5H 1

A2ps
expF2

~ ln x2h!2

2s2 G J 1

x

for 0,x,` (12)

Using Eq. ~12! and defining thatl5eh ~i.e., h5ln l!, one can
express the mean value ofX as the following:

E@X#5E
0

`

x• f X~x!dx5E
0

` 1

A2ps
expF2

S ln
x

l D 2

2s2
Gdx

(13)

Changing the variable to replace ln(x/l) with t, one can modify
Eq. ~13! to gain the mean value ofX, i.e.,

E@X#5l exp~s2/2!E
2`

` 1

A2ps
expF2

~t2s2!2

2s2 Gdt

5exp~h1s2/2! (14)

With the same approach, one can further show thatE@X2#
5exp(2h12s2). From the relationshipV@X#5E@X2#2E2@X#,
the following result can be obtained

V@X#5@exp~2h1s2!#•@exp~s2!21# (15)

The combinations of Eqs.~14! and~15! would lead to the expres
sions given in Eq.~6!.

Appendix II. Derivation of Eq. „8…

GivenY5f(X), the Taylor series expansion ofY aboutj can be
written as

Y5f~j!1f8~j!•~X2j!1f9~j!•~X2j!2/21¯ (16)

The first-order approximation of Eq.~16! is

Y5f~j!1f8~j!•~X2j! (17)

SinceE@X#5j, taking the expected value of Eq.~17! leads to Eq.
~8a!, i.e.,

E@Y#5f~j!1f8~j!•E@X2j#5f~j! (18)
-

.

The difference in Eqs.~17! and ~18! becomes

Y2E@Y#5f8~j!•~X2j! (19)

According to the definition of variance, the square of Eq.~19! can
be transformed into Eq.~8b!, i.e.,

V@Y#5E@~Y2E@Y# !2#5@f8~j!#2
•E@~X2j!2#

5@f8~j!#2
•V@X# (20)

Notation

The following symbols are used in this paper:
B 5 A4Dgd/3CL;

B8 5 ln B;
CL 5 Lift coefficient;

d 5 diameter of a particle;
E@X# 5 expected value of the random variableX;
iei2 5 Euclidean norm of the error;

FL 5 instantaneous lift force;
f v(vb) 5 probability density function~pdf! of vb ;

g 5 gravitational acceleration;
P 5 pickup probability of sediment;

R2 5 coefficient of determination;
ub 5 instantaneous velocity approaching a bed particle;
ūb 5 time-mean value ofub ;
u* 5 shear velocity;

V@X# 5 variance of the random variableX;
vb 5 ln ub ;
v̄b 5 mean value ofvb ;
W 5 submerged weight of a sediment particle;
D 5 (rs2r)/r;
u 5 dimensionless shear stress5u

*
2 /(Dgd);

r 5 density of fluid;
rs 5 density of sediment particle;
su 5 standard deviation ofub ~or turbulence intensity!;

and
sv 5 standard deviation ofvb .
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