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Pickup Probability of Sediment under Log-Normal
Velocity Distribution
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Abstract: This work presents the formulation of the pickup probability for sediment entrainment under the log-normally distributed
instantaneous velocity. Herein two mathematical approaches, namely the analytical method and the first-order approximation method, ai
employed in the theoretical derivation. The results are compared with the published experimental data and the previous pickup probabilit
derived for the normal velocity distribution. The outcome appears to indicate that the pickup probabilities resulting from the two
mathematical methods are of the same order of accuracy if the optimal lift coefficients are used. The error analysis implies that the result
for the log-normal distribution reveal a significant improvement of accuracy over that for the normal distribution. The overall improve-
ment exceeds 50%.
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Introduction rected toward the calculation of pickup probability. Sun et al.
(1997 considered the probability distributions of the moments
Stochastic methods have long been applied to modeling the hy-caused by the drag, lift, and submerged weight to develop a prob-
draulics of open-channel flow and sediment transg®apanico- ability equation for particle rolling. Cheng and Chi¢h998 pre-
laou 1999h. For the past several decades, despite the improvedsented a theoretical formulation of the lifting probability.
knowledge gained in the area of stochastic hydraulics, there still  Following Einstein’s definition, Cheng and Chigid998 ex-
remains much space for advancement in practical modeling. Forpressed the pickup probability for sediment entrainment in a hy-
instance, the initial entrainment and motion of sediment particles draulically rough flow as the following:
is generally believed to constitute a stochastic process. The in- P=P(FL>W)=P(u§> B2)=P(u,>B)+P(u,<—B) (1)
stantaneous shear stress, drag, and lift forces induced by the tem-
poral fluctuations of turbulent flow appear to be the main con- Where F =instantaneous lift force acting on a particle
tributors to the stochastic nature of the sediment entrainmentC(wd?/4)(pui/2), in which C_=lift coefficient (typically be-
problem. Incorporating this concept into his analysis, Einstein tween 0.1 and 0} u,=instantaneous velocity approaching the
(1950 used the pickup probability to derive the bed load func- particle on the bedd=particle diameter, ang=density of fluid;
tion. He defined the pickup probability as the probability of the W=submerged weight of the partictp,—p)g(wd?/6), in
dynamic lift on a sediment particle being greater than its sub- which ps=density of sediment particle amg=gravitational accel-
merged weight. When such a state is reached, there is a probabileration; B=y4Agd/3C_, in which A=(ps—p)/p. For a fully
ity that a sediment particle resting on the bed will start to move in turbulent flow, the lift coefficientC, is a function of particle
the lifting mode. Hence Einstein’s pickup probability essentially shape(Benedict and Christensen 197aut is independent of the
represents the lifting probability of a sediment particle. In fact, Reynolds numbefColeman 196y By assuming that the prob-
depending on the characteristics of a near-bed flow, the incipientability density function(pdf) of u, obeys the normal distribution
motion of a sediment particle can occur in either one of the fol- and employing the experimental mean valyg=5.52u, (where
lowing modes, namely, rolling, sliding, or liftingCheng and u, =shear velocity and the standard deviatidor turbulence in-
Chiew 1999; Papanicolaou 1999&everal works have been di- tensity o,=2.0u, , Cheng and Chiew1998 obtained the fol-
lowing expression for pickup probability:
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empirical equation by Fredsoe and Deiga&t892. The results fu(up)
reveal that Einstein’s formula consistently overpredicts the pickup 1l Log-Normal Distribution
probability, and Fredsoe—Deigaard’s equation gives meaningful
results only for0>0.045 and underestimates the pickup probabil-
ity for 6>0.1, whereas Eq.2) tends to underestimate and over-
estimate the pickup probability f&#<0.07 and6>0.07, respec-
tively.

The discrepancies between the measured data an@Enay
be attributed to the differences in grain geometdaden 198Y,
sediment availabilitfChurch 1978 and bed roughneg®apani-
colaou et al. 2001 among several others. However, we tend to
believe that the Gaussian assumptionugnis a main factor be-
cause most of the experiments used for verification were con- l |

Vp=In Uy

ducted under the conditions similar to those for which &.is

derived. Moreover, previous investigatof€hristensen 1965;

Yalin 1977 have pointed out that the component of velocity fluc-

tuation in rough turbulent flows follows the normal distribution

with a zero mean yet the streamwise instantaneous velocity is £(Vp)
more likely to be characterized by the log-normal distribution 4‘
(Lopez and Garcia 2001In fact, the log-normal distribution is
physically reasonable for the instantaneous velocity because the
approaching velocity in the longitudinal direction should be of
positive magnitude, which is evidenced by Nelson et{#995.

The objective of this study is to revise EQ) with the log-
normally distributed instantaneous velocity. To this end we em-
ploy two mathematical approaches to formulate the new pickup
probability. An error analysis is also conducted to show the im-
proved accuracy of the results obtained in the present study. 0

Normal Distribution

P (vs>B’')

Vb
» B'(=InB)

Revised Pickup Probability Fig. 1. Schematic diagram showing the transformation of pickup
probability between log-normal and normal distributions

As the instantaneous velocity, obeys the log-normal law for 0
<up<o, the logarithm ofu,, is normally distributed as shown in
Fig. 1. If vy, denotes the logarithm afy, (i.e.,v,=Inu,), the pdf Analytical Method

of vy, can be expressed by If X'is a random variable whose logarithyhis normally distrib-

1 (vp—0p)2 uted, it can be shown that both the mean value and the variance of
f,(vp)= —exr{— —_— 3) Y vary as a function of the mean and the varianceXofsee
V2ma, 20, Appendix )), i.e.,
wherev, ando, =the mean and standard deviatiorvgf, respec- E[Y]=In(E[X]/V1+V[X]/EZX]) (6a)
tively. The pickup probability given in Eq1) should be modified
as the following: V[Y]=In(1+ V[X]/E?[X]) (6b)

4) where Y=In X; E[X] and V[X], and E[Y] and V[Y] are the
mean value and the variance XfandY, respectively. Replacing
in which B’=InB. According to the procedures presented in E[X] andV[X] in Egs.(6a) and (6b) with the values ofu, and
Cheng and Chievw1998, one can rewrite Eq4) as ol yieldsv,=In(5.1,) andcr§=0.123. Substitution o, and
o into Eq.(5) results in a revised form of the pickup probability

P=P(u,>B)=P(vp,>B’)=1—-P(—<v,<B’)

o B’
P:1_|:f fv(vb)dvb—i_J; fv(vb)dvb

- b 05 o5 N(0049C) In(0.049HC) \/ In(O 049HC,) 2
- In(0.0498C,)| V= & 0702
2 B'—v
_05-050 2 \/ ( b) ©) (7)
IB vp| R
. . - First- A imation Meth

To use Eq.(5) for calculating the pickup probability, one needs irst-Order Approximation Method
the mean and the standard deviation in the normal dortian Let X be a random variable whose mean valij&X]=¢& andY be
vy, ando, , respectively. However, the information that the time ~ a mathematical function X, i.e., Y=¢(X). With the first-order
average valueu,=5.521, and the turbulence intensityr, Taylor series expansion, it has been shown that the mean and the

=2.0u, is valid for the original(i.e., log-normal domain. Thus variance ofY can be approximated by the following expressions
the task to be undertaken is to transform the given valuas,of  (see Appendix I
and o, into v, ando,. Herein two methods are used for the E[Y]=db(£) (8a)
transformation, namely, the analytical method and the first-order

approximation method. They are described below. VIY]=[d'(§)]? V[X] (8b)
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Fig. 2. Comparison of theoretical pickup probabilities with experi-
mental data. The optimaC, values for log-normalanalytical and
first-order approximation methodand normal distributions are 0.21,
0.18, and 0.25, respectively.

Setting $(X)=In X and replacmgg and V[X] in Eqgs.(8a) and
(8b) with the values ol’ukJ ando? givesv,=In(5.521,) ando?
=0.131. Substituting, and o |nto Eq. (5) leads to the follow-
ing formula for pickup probability
exp{
€

In(0.044HC,)

|In(0 044HC))|
Egs.(7) and(9) both indicate that, for a given lift coefficie, ,
the pickup probability is only dependent on the dimensionless
shear stress.

P=0.5-0.5

In(0.044hC|) ]2
T 0724

Results and Discussion

For comparison, the results of Ed8), (7), and(9) as well as the
published experimental dat&uy et al. 1966; Luque 1974; Jain
1992; Papanicolaou 199Pare demonstrated in Fig. 2. Given that
the C, value used by Cheng and Chiei#998 was based on
curve fitting, herein we select appropridle values to best fit the
experimental data. The optim@|_ values for Eqs(7) and(9) are
0.21 and 0.18, respectively. The former is close toGhevalue
selected by Cheng and Chigid998 (i.e., 0.25 and the latter is
very close to the constant valgiee., 0.178 used by Einstein and
El-Samni(1949 for the flow velocity measured at 0.8%bove
the theoretical bed level. Later we will also show that the log-
normal velocity distribution performs better than the normal dis-
tribution even if the sam€, value(=0.25 is used for Eqs(2),

(7), and(9). In Fig. 2, one can see that the results of Eg@s.and

(9) are almost identical and in better agreement with the experi-
mental data than Eq2). To quantitatively investigate the im-
proved accuracy, the Euclidean norm is used as a measure to
represent the overall error between the theoretical and experimen-
tal results(Conte and de Boor 1980The Euclidean norm is

defined as
n
lello=\/ X ef

wheree;=the difference between théh data and the theoretical
value, anch=the total number of the experimental data. The mag-
nitudes of the Euclidean norm and the coefficient of determina-
tion R? for Egs.(2), (7), and(9) are listed in Table 1, where one
may notice that the values §&|, andR? for Egs.(7) and(9) are
identical(i.e., 0.266 and 0.966, respectivelyhen the optimaC,
values are used. This appears to imply that the pickup probabili-
ties resulting from the analytical and the first-order approximation
methods are of the same order of accuracy in case the appropriate
lift coefficients can be adopted. The||, value for Eq.(2) reaches
0.541, which is much greater than that value for E@s.and(9)

(i.e., 0.266. The R? value for Eq.(2) (i.e., 0.858 is substantially
lower than that value for Eqg7) and (9) (i.e., 0.966. In sum-
mary, the results for the log-normal velocity distribution reveal a
significant improvement of accuracy over that for the normal dis-
tribution. The outcome of the current study indicates that the
overall percentage of improvement is at the level of 51%. On the
other hand, when the san@® value(i.e., 0.25 is used, the cor-
responding|e||, values for Eqs(7) and(9) are 0.432 and 0.794,
while the corresponding&? values are 0.910 and 0.807. The per-
formance of the log-normal distribution is still superior to that of
the normal distribution, although the first-order approximation is
not as good as the analytical method. The claim made here is
based on the comparison with the experimental data. Currently
the available data are limited, especially for the range of high
shear stress. Thus more data are needed for validation before a
general conclusion can be drawn.

(10)

Conclusions

In this study we revised the pickup probability of sediment en-
trainment with the log-normal velocity distribution. Two math-
ematical approacheg.e., the analytical and the first-order ap-
proximation methodswere used for the formulation of the pickup
probability. The modified results were compared with the experi-
mental data and the previous pickup probability derived for the
normal velocity distribution. It is shown that the accuracy of the
results gained from the analytical and the first-order approxima-
tion methods is nearly identical in case the optimal lift coeffi-
cients are used. The error analysis also indicates that the modified
results for the log-normal distribution reveal a significant im-
provement over that for the normal distribution. The overall im-
provement of the accuracy exceeds 50%. In the present study the

Table 1. Euclidean Norm and Coefficient of Determination for Different Probability Distributions

Log-normal

Analytical [Eq. (7)]

First-order ApproximatioEg. (9)] Normal [Eg. (2)]

Probability distribution C,=0.21 C,=0.25 C,=0.18 C,=0.25 C.=0.25
lell, 0.266 0.432 0.266 0.794 0.541
R? 0.966 0.910 0.966 0.807 0.858
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optimal choice of theC, value for sediment entrainment is based The difference in Eqs(17) and(18) becomes
on the best fitting to the experimental data. However, the depen-
Y—E[Y]=¢'(§)-(X—§) (19)

dence of theC, value on the flow condition and grain geometry
(such as particle shape and grading of nonuniform sedinenf According to the definition of variance, the square of B¢) can

great importance and remains to be investigated in a future study.pe transformed into Eq8b), i.e.,

Appendix |. Derivation of Eq.  (6)

Given thatE[Y]=v and V[Y]=¢?, the pdf of Y can be ex-
pressed as

1 (y—m)?
fY(y)_\/ﬁqex - 20.2

SinceY=¢(X)=In X, one can obtain the pdf of by the chain
rule and Eq(11), i.e.,

for —co<y<oo  (11)

d
00 =fo (0] o]

1 (Inx—m)?]| 1
- ijeX[{— 20° };

for 0<x<o

(12)

Using Eq.(12) and defining that=¢" (i.e., n=In\), one can
express the mean value ¥fas the following:

s ] [ngf

E[X]=] x-f xdx=j exg — —5——|dx
[X] fo x() 0 \2mo 20

(13)

Changing the variable to replace %) with T, one can modify
Eqg. (13) to gain the mean value of, i.e.,

_ 2\2
! ex;{—ud

E[X]=\ exp(c?/2) 252

—=\2ma

T

=expn+c?/2) (14)
With the same approach, one can further show tBAK?]
=exp(+20?). From the relationshipv[ X]=E[X?]—EX],
the following result can be obtained

V[X]=[exp2n+a?)]-[exp(c?)—1] (15)
The combinations of Eq$14) and(15) would lead to the expres-

sions given in Eq(6).
Appendix Il. Derivation of Eq.  (8)

GivenY=¢(X), the Taylor series expansion ¥fabout¢ can be
written as

Y=¢(E)+d/(£)- (X—E)+"(§)- (X—€)%/2+--+ (16)
The first-order approximation of Eq16) is
Y=(E)+d'(§)(X=§) 17)

SinceE[ X]=¢, taking the expected value of E{.7) leads to Eq.
(8a), i.e.,

E[Y]=¢(&)+¢'(§)-E[X—E]=d(E) (18)

VIYI=E[(Y—-E[Y])?]=["(&)]* E[(X—£&)?]

=[4'(£)1?-V[X] (20)

Notation

The following symbols are used in this paper:
B = J4Agd/3C;
B’ = InB;
C_ = Lift coefficient;
d = diameter of a particle;
E[X] = expected value of the random variaiXg
lel, = Euclidean norm of the error;
F_ = instantaneous lift force;
f,(vp) = probability density functior(pdf) of vy ;
g = gravitational acceleration;
P = pickup probability of sediment;
R? = coefficient of determination;
U, = instantaneous velocity approaching a bed particle;
u, = time-mean value ofi,;
u, = shear velocity;
V[ X] = variance of the random variab}
vy, = Inuy;
v, = mean value oby,;
W = submerged weight of a sediment particle;
A = (ps—p)lp;
6 = dimensionless shear stress?/(Agd);
p = density of fluid;
ps = density of sediment particle;
o, = standard deviation afi, (or turbulence intensiby
and
o, = standard deviation oy, .

References

Benedict, B. A., and Christensen, B. £972. “Hydrodynamic lift on a
stream bed.”SedimentationH. W. Shen, ed., Fort Collins, Colo.,
5.1-5.17.

Cheng, N.-S., and Chiew, Y.-M1998. “Pickup probability for sediment
entrainment.”J. Hydraul. Eng.,124(2), 232—-235.

Cheng, N.-S., and Chiew, Y.-M(1999. “Closure to discussion of
‘Pickup probability for sediment entrainment.’J. Hydraul. Eng.,
125(7), 789-789.

Christensen, B. A(1965. “Discussion of ‘Erosion and deposition of
cohesive soils.” "J. Hydraul. Div., Am. Soc. Civ. En@1(HY5), 301—
308.

Church, M. A.(1978. “Palaeohydrological reconstructions from a Ho-
locene valley fill.” Fluvial sedimentologyA. D. Miall, ed., Canadian
Society of Petroleum Geologists, Alberta, Canada, 743—-772.

Coleman, N. L.(1967. “A theoretical and experimental study of drag

and lift forces acting on a sphere resting on hypothetical stream bed.”

Proc., 12th CongresdAHR, Fort Collins, Colo., 3, 185-192.

Conte, S. D., and de Boor, @1980. Elementary numerical analysis
McGraw-Hill, New York.

Einstein, H. A.(1950. “The bed load function for sediment transporta-
tion in open channel flows.Tech. Bull. 1026U.S.D.A., Washington,
D.C.

JOURNAL OF HYDRAULIC ENGINEERING / APRIL 2002 / 441



Einstein, H. A., and EI-Samni, E. A1949. “Hydrodynamic forces on a
rough wall.” Rev. Mod. Phys21, 520-524.

Fredsoe, J., and Deigaard, RL992. Mechanics of coastal sediment
transport World Scientific, River Edge, N.J.

Guy, H. P., Simons, D. B., and Richardson, E.(1966. “Summary of
alluvial channel data from flume experiments, 1956—-19613.G.S.
Professional Paper462-I.

Jain, S. C(1992. “Note on lag in bedload dischargeJ. Hydraul. Eng.,
1186), 904-917.

Lopez, F., and Garcia, M. H200)). “Risk of sediment erosion and
suspension in turbulent flowsJ. Hydraul. Eng.,127(3), 231-235.

Luque, R. F.(1974. Erosion and transport of bed load sedimebelft
University of Technology, Delft, The Netherlands.

Naden, P.(1987. “An erosion criterion for gravel-bed rivers.Earth
Surf. Processes Landformi2, 83—93.

442 | JOURNAL OF HYDRAULIC ENGINEERING / APRIL 2002

Nelson, J. M., Shreve, R. L., McLean, S. R., and Drake, T(X895.
“Role of near-bed turbulence structure in bed load transport and bed
form mechanics."Water Resour. Res31(8), 2071-2086.

Papanicolaou, A. N(1999a. “Discussion of ‘Pickup probability for sedi-
ment entrainment.’ "J. Hydraul. Eng.,1257), 788—-789.

Papanicolaou, A. N(1999h. “Stochastic considerations in hydraulics.”
J. Hydraul. Eng.,12512), 1229-1330.

Papanicolaou, A. N., Diplas, P., Dancey, C. L., and Balakrishnan, M.
(200)). “Surface roughness effects in near-bed turbulence: Implica-
tions to sediment entrainmentJ. Eng. Mech.127(3), 211-218.

Sun, Z., Xie, J., Duan, W., and Xie, B1997. “Incipient motion of
individual fractions of nonuniform sedimentJ. Hydr. Eng., Chin.
Hydr. Eng. Soc.97(10), 25—-32(in Chineseg.

Yalin, M. S. (1977. Mechanics of sediment transppRergamon, Tarry-
town, N.Y.



