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Abstract: Higher-order approximation techniques for estimating stochastic
parameter of the non-homogeneous Poisson (NHP) model are presented. The
NHP model is characterized by a two-parameter cumulative probability
distribution function (CDF) of sediment displacement. Those two parameters are
the temporal and spatial intensity functions, physically representing the inverse of
the average rest period and step length of sediment particles, respectively.
Dif®culty of estimating the parameters has, however, restricted the applications of
the NHP model. The approximation techniques are proposed to address such
problem. The basic idea of the method is to approximate a model involving
stochastic parameters by Taylor series expansion. The expansion preserves
certain higher-order terms of interest. Using the experimental (laboratory or
®eld) data, one can determine the model parameters through a system of
equations that are simpli®ed by the approximation technique. The parameters so
determined are used to predict the cumulative distribution of sediment
displacement. The second-order approximation leads to a signi®cant reduction of
the CDF error (of the order of 47%) compared to the ®rst-order approximation.
Error analysis is performed to evaluate the accuracy of the ®rst- and second-order
approximations with respect to the experimental data. The higher-order
approximations provide better estimations of the sediment transport and
deposition that are critical factors for such environment as spawning gravel-bed.
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1
Introduction
Stochastic processes have been used for modeling sediment transport over six
decades. Einstein (1937) presented perhaps, the ®rst stochastic model for sedi-
ment transport. His model was based on the concept that bed-load particles
moving in a sequence of alternate steps and rests. Since then, a number of sto-
chastic models have been proposed. For example, the two-layer model by
Crickmore and Lean (1962), the exponential-exponential model by Hubbell and
Sayre (1964), the gamma-exponential model by Yang and Sayre (1971), and the
model of Vukmirovic and Wilson (1977) which stated the in¯uence of the present
step on the probability of next step [see Hung and Shen (1972); Shen and Cheong
(1980) for further discussions]. Among them, the result presented by Hubbell and
Sayre (1964) is considered to coincide with Einstein's model. Both used the
simpli®ed ¯ow conditions and assumed a homogeneous process of transport.

Shen and Todorovic (1971) eliminated certain idealized assumptions to de-
velop a general stochastic model for one-dimensional movement of bed material.
They regarded the transport of sediment as a non-homogeneous random process
and hypothesized the rest periods and step lengths of sediment particles being
temporal and spatial varying quantities, respectively. The non-homogeneous
Poisson (NHP) model of Shen-Todorovic is described by the cumulative proba-
bility distribution function (CDF) of sediment displacement:

Ft�x� � Prob�Xt � x�

� exp ÿ
Z t
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� �
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in which Xt denotes the x-direction displacement of a particle at time t; k1 and k2

are the temporal and spatial intensity functions, physically representing the in-
verse of the average rest period and step length; K1 and K2 are the corresponding
integral intensity functions. The homogeneous model of Einstein-Hubbell-Sayre
may be viewed as a special case of this more general yet less restrictive stochastic
model. Mathematically the NHP model is an improvement over the earlier ones.
However, the complexity of this model and dif®culty in determining the pa-
rameters restricts its broad applications.

A ®rst-order approximation technique for estimating the parameters of the
NHP model is proposed to address the above problem (Wu and Shen, 1998). The
basic idea of such method is to approximate a model involving stochastic pa-
rameters by the ®rst-order Taylor expansions. Although the proposed approxi-
mation technique shows signi®cant progress and the results are encouraging, the
CDF error of the ®rst-order approximation (sometimes exceeds 10% with respect
to the measured data) is not negligible for certain critical situations. For instance,
the survival of salmon eggs deposited in the gravel is of important ecological and
economic concerns, the NHP model may well be used to simulate the sediment
transport and resulting deposition in the spawning gravels. The egg survival is
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related to the apparent velocity through the spawning gravels (Cooper, 1965), a
10% deviation in the speci®c deposit of sediment leads to a 40% difference in the
survival rate (Milhous, 1982). Such inaccuracy leads to a marked overestimate on
either the cost required for habitat conservation or the production of ®shes. Since
the error term associated with the ®rst-order Taylor expansions is of the second
order of a ®nite increment (i.e. O�D t2� or O�Dx2�), one can improve the accuracy
of the approximation method by either reducing the size of the increment or
preserving the higher-order terms in Taylor series. The latter is adopted in the
present study because it prevents increasing the dif®culties of experimental
measurement and makes more signi®cant improvement than the former.

This work presents the second- and higher-order approximation techniques for
estimating the stochastic parameter of the NHP model. Flume studies are carried out
to verify the proposed approximation scheme. The results of the ®rst- and second-
order approximations are compared. The general form of the simpli®ed CDF for
higher-order approximations is provided. Error analysis is performed to evaluate
the accuracy of the ®rst- and second-order approximations.

2
Higher-order approximation techniques
The ®rst-order approximation technique indeed provides a route to approach the
temporal and spatial intensity functions. However, it is noticed that K1 is the
dominating term that governs the temporal variation of Eq. (1). In addition, the
successive measurements of sediment distribution at a small time interval, D t, are
practically inef®cient and physically infeasible without an adequate experimental
apparatus. The ®rst writer and Shen (1998) recommended a simple alternative
method to evaluate the integral temporal intensity function. Therefore, the main
focus of this paper is the estimation of the spatial intensity function using higher-
order approximation techniques based on Taylor's expansions.

2.1
The second-order approximation technique
To develop the second-order approximation technique, the CDF of sediment
displacement is expanded both forwards and backwards with respect to a selected
point x by the ®nite increments, Dx and 2Dx. This is accomplished by introducing
the second-order Taylor series of the integral spatial intensity function into the
forward- and backward-expansions of Eq. (1). The second-order expansions are
divided by the CDF at x for further simpli®cation. The simpli®ed forward- and
backward-expansions are solved as a system to evaluate the parameter k2. Such
system of equations is listed below and its derivation is shown in Appendix A.

Fti
�x� Dx�
Fti
�x� � exp�ÿa1 ÿ a2� � 1� �a1 � a2� � b1 � 1

2
a2

1 � b2

� �
�2�

Fti
�xÿ Dx�
Fti
�x� � exp�a1 ÿ a2� � 1� �ÿa1 � a2� � b1 � 1

2
a2

1 � b2

� �
�3�

Fti
�x� 2Dx�
Fti
�x� � exp�ÿ2a1 ÿ 4a2� � 1� �2a1 � 4a2� � b1 � 2 a2

1 � b2

� � �4�

Fti
�xÿ 2Dx�
Fti
�x� � exp�2a1 ÿ 4a2� � 1� �ÿ2a1 � 4a2� � b1 � 2 a2

1 � b2

� � �5�
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in which a1, a2, b1, and b2, all varying as a function of x, are the four unknowns to
be solved. The quantitative values of Fti

�xÿ 2Dx� through Fti
�x� 2Dx� are de-

termined from the data taken at a speci®c time ti. Since that a1 � K02 � Dx (see
Appendix A) and K02 � k2, one can determine the magnitude of k2 at the location
x once a1 is solved. Eventually, one can pursue the spatial intensity function by
solving the system of equations incrementally at the locations where the cumu-
lative distribution of sediment is measured.

2.2
Higher-order approximation techniques
Following the procedures described in the preceding section, one can essentially
develop the higher-order approximation techniques for estimating the parameters
of the NHP model (Wu and Wang, 1997). Preserving the higher-order terms in
Taylor expansions, however, complicates the derivation and increases the number
of unknowns. Table 1 is a summary of the simpli®ed form of the expanded CDF.
For the ith-order approximation method, as indicated in Table 1, the number of
unknowns (or equations) to be solved is 2i. These unknowns are a1 through ai

and b1 through bi. The number of locations where the cumulative distributions of
sediment are to be measured is 2i� 1, namely, �xÿ iDx� through �x� iDx�. For
example, to collect the physical data required for the second-order approxima-
tion, the sampling points must be extended both forwards and backwards by an
additional increment.

3
Laboratory experiments
The transport and resulting deposition of sediment in the gravel-bed rivers is an
issue attracting considerable concerns. The intrusion of ®ne sand into spawning
gravels and the pollution of streambed by contaminated sediment are commonly
reported [e.g. Lisle (1989); Jobson and Carey (1989); Joy et al. (1993)]. Modeling
the spatiotemporal distribution of sediment in such environment is essential for
assessing the consequential impacts. The aim of this experimental study is
mainly to verify the proposed approximation techniques and grasp a better
understanding of the physical process. The experiments are conducted in a
tilting ¯ume of 20 cm� 40 cm cross-section. The bottom of the ¯ume is paved
with 5-cm-thick gravel substrate, as shown in Figure 1. A sand strip of the
predetermined amount is placed across an upstream section of the gravel bed
and subjected to a steady ¯ow. For each trial, ¯ow is terminated after a period of
running and the water is drained. Several samples are then taken longitudinally

Fig. 1. Schematic diagram of experimental setup and con®guration
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along the ¯ume with an interval of 8 cm (designated as Dx in Fig. 1). The
quantities of sediment remained at the source and within the gravel substrate
(designated as m0 and m1 through m7, respectively) are physically measured.
Two types of uniformly-graded sand with d50 of 0.65 mm (type C) and 0.30 mm
(type F) are used. The well-sorted gravel with D50 of 8.3 mm is used as the
substrate. Flowrate is in the range between 1� 10ÿ3 and 4� 10ÿ3 cms, slope of
the ¯ume varies from 6/1000 to 20/1000. A complete list of the testing conditions
and the experimental results is given in Table 2. The cumulative probability of
sediment distribution can be determined precisely from the data measured for a
speci®c period of running, i.e.

Ft�xn� �
Pn
i�0

mi

MT
�6�

where xn � n � Dx for n � 0; 1; 2; . . . ; 7; MT (� 1 kg) is the quantity of sand
introduced at the upstream source. The cumulative distribution of sediment
evaluated for various locations is then substituted into Eqs. (2)±(5) to solve the
model parameters.

4
Results and discussion
Based on the experimental data, one can determine the spatial intensity function
and consequently calculate the cumulative probability distribution of sediment
displacement. The ®rst- and second-order approximations are presented and
compared in the following sections.

4.1
Spatial intensity function
The magnitudes of the spatial intensity function at several locations from the
source are estimated by the ®rst- and second-order approximation techniques.
Fig. 2 illustrates the calculated k2 and the ®tting curves. These curves are typically
of exponential distribution, i.e.

k2�x� � a � eÿb x �7�
in which a and b are ®tting coef®cients. As k2 is varying as a function of distance
only, a series of experiments for various running periods, carried out with
identical testing conditions, corresponds to one spatial intensity function. Fig. 2
reveals that the exponent b is nearly identical for both the ®rst- and second-order
curves, but the coef®cient a is smaller for the higher-order approximation. Fur-
ther study is required to investigate if this is a universal law for the third- and
higher-order methods. However, according to a similar experimental study (Wu,
1993), it is anticipated that the stochastic parameter varies with the physical
properties such as the ratio of gravel to sediment sizes, the amount of sediment
introduced, the slope of the ¯ume and the ¯owrate. The monotonously de-
scending trend of the k2 curve (or the increasing trend of the step length) is
attributed to the increasing void space, along the ¯ume, that is available for
sediment particles to move through.

4.2
Cumulative probability distribution of sediment displacement
The ®rst- and second-order approximations of the spatial intensity function are
used to calculate the cumulative probability distributions of sediment displace-
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Fig. 2. Calculated data and ®tting curves of spatial intensity function k2 (h 1st-order data,
� 2nd-order data)
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ment. The computed results and the experimental data are shown in Fig. 3. The
second-order approximations apparently reveal better agreement with the ex-
perimental data. The Euclidean norm, a measure of the gross error between the
computational and physical data, is de®ned as

kek2 �
������������Xn

i�1

e2
i

s
�8�

in which ei is the difference between the ith data and the computational result, n
is the number of measured data (Conte and de Boor, 1980). The magnitudes of the
Euclidean norm for all trials are summarized in Table 3. The gross errors of the
second-order approximations are consistently smaller than the errors of the ®rst-
order approximations. The reduction of the gross error for a single trial is of the
order of 12% to 61%, with an average of 47%. Figure 3 also reveals that the
magnitudes of the ®rst-order CDF are larger than the magnitudes of the second-
order CDF. An inspection on Eq. (1) indicates that when K2 is increasing, the
growth of the compound in®nite series is faster than the decay of the exponential
term. As a whole, the product of the compound in®nite series and the exponential
terms in Eq. (1) is greater for larger K2 (or k2).

5
Error analysis
The ``error'' is de®ned as the difference between the exact magnitude of a quantity
(e.g. physical data) and its approximate value (e.g. simulated or computed result).
The overall error of the estimated parameter or the cumulative probability dis-
tribution, in essence, contains two portions. The ®rst portion originates from the
underlying assumptions of the NHP model. The second portion arises from the
approximation method. Discussion of the ®rst error involves an examination of
the rationality and applicability of the model (Hung and Shen, 1972). The main
focus of this investigation is the computation error resulting from the approxi-
mate parameters. The experimental error is, however, not in the scope of the
present study.

5.1
Error of the spatial intensity function
To evaluate the error of the spatial intensity function that is determined from a
system of simpli®ed equations, the error of such system should be considered at
®rst. Theoretically, the error of the simpli®ed CDF is the difference between the
close and simpli®ed forms of the equation. We do not have the exact form of
Ft�x� Dx�=Ft�x�, nevertheless, the leading error term of the ®rst-order simpli®ed
CDF can be estimated with its difference to the second-order simpli®ed CDF
(derivation shown in Appendix B), i.e.

E
�1�
CDF �

Ft�x� Dx�
Ft�x�

� ������2�ÿ�1�� O�Dx2� �9�

in which E
�1�
CDF is the leading error term of the ®rst-order simpli®ed CDF, the

superscript indicates the order of approximation. A quantity solved from a sys-
tem with an error of O�Dx2� inherits an error of the same order (details shown in
Appendix B), thus
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Fig. 3. Experimental data and computed cumulative probability distributions using the
®rst- and second-order approximated parameters
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a
�1�
1 � â1 � O�Dx2� �10�

in which â1 is the close form solution of a1. Using Eqs. (A-4) and (10), one can
express the magnitude of the error associated with the ®rst-order spatial intensity
function as:

e�1� � k̂2 ÿ k�1�2 � O�Dx� �11�
in which k̂2 is the exact magnitude of the spatial intensity function. The following
relations also hold for the ith-order approximation method (Wu and Wang,
1997):

E
�i�
CDF � O�Dxi�1�

e�i� � O�Dxi�
�12�

where E
�i�
CDF and e�i� are the leading error of the ith-order simpli®ed CDF and the

error of the spatial intensity function determined by the ith-order approximation
technique, respectively.

5.2
Error of the cumulative probability distribution
As shown in Appendix B, the error of the cumulative probability computed with
the ®rst-order spatial intensity function is of the ®rst order of Dx, i.e.

E�1� � F̂t�x� ÿ F
�1�
t �x� � O�Dx� �13�

in which F̂t�x� and F
�1�
t �x� are the exact magnitude and ®rst-order approximation

of the CDF at location x. The general form of the error for the ith-order ap-
proximation method can be expressed as the following (Wu and Wang, 1997):

E�i� � F̂t�x� ÿ F
�i�
t �x� � O�Dxi� �14�

Table 3. Euclidean norm of computed results and percentage of reduced gross error for
second-order results

Experiment Euclidean norm kek2 Percentage of
reduced error

Average
percentage of

1st-order 2nd-order [(1))(2)]/(1) reduced error
(1) (2)

LC-1-FL2-S20-30S 0.032 0.018 43%
LC-1-FL2-S20-1M 0.050 0.024 53%
LC-1-FL2-S20-10M 0.057 0.029 49% 49%

LC-1-FL3-S13-30S 0.034 0.014 60%
LC-1-FL3-S13-5M 0.042 0.016 61%
LC-1-FL3-S13-30M 0.049 0.021 58% 59%

LF-1-FL25-S6-5M 0.043 0.038 12%
LF-1-FL25-S6-30M 0.057 0.034 41% 27%

47%
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The error analysis shows that the higher-order approximation method inherently
leads to a higher-order error in terms of the ®nite increment. For a suf®ciently
small Dx, the magnitude of the error is signi®cantly reduced as the higher-order
method is used. Our results indicate that the second-order scheme eliminates
nearly 50% of the CDF error of the ®rst-order approximation.

6
Conclusions
This paper presents higher-order approximation techniques for estimating sto-
chastic parameter of the non-homogeneous Poisson model used for modeling
sediment transport. The spatial intensity function is estimated and thus the cu-
mulative probability distribution of sediment displacement is calculated. The
®rst- and second-order approximations are compared. The following conclusions
can be drawn from this study:

(1) For the ith-order approximation method, the number of equations to be
solved is 2i and the number of locations where the physical data are to be
gathered is 2i� 1. The extra effort required for the higher-order scheme
ensures improved accuracy of the estimated parameters, and therefore, the
computed probability distributions of sediment displacement. The second-
order approximation technique leads to a 47% reduction of the CDF error of
the ®rst-order approximation. This improvement is of practical signi®cance
for a critical estimation of the sediment intrusion into spawning gravels.

(2) The spatial intensity function is of exponential distribution along the distance
from the source. This function can be represented by Eq. (7), in which the
exponent b is nearly identical for the ®rst- and second-order curves, yet the
coef®cient a is greater for the ®rst-order curve. The monotonously descending
trend of the spatial intensity function (i.e. the increasing trend of the step
length) is due to the increasing free void space for sediment particles to move
through.

(3) For the ith-order approximation scheme, the leading error of the simpli®ed
CDF (as listed in Table 1) is of the order of O�Dxi�1�; the spatial intensity
function solved from a system of such simpli®ed equations inherits an error
of O�Dxi�. The CDF error of the ith-order approximation is in a magnitude of
O�Dxi�.
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Appendix A

Derivation of Eqs. (2)±(5)
To express Ft�x� Dx�, one requires expanding of �K2�x� Dx��j in which
K2�x� Dx� is represented by Taylor series. The higher-order terms of Dx
(namely Dx3, Dx4,..., etc.) in Taylor's expansions and the jth-degree polynomial
are negligible if the ®nite increment Dx is suf®ciently small, i.e.

�K2�x� Dx��j � K2�x� � �Dx� � K02�x� � �Dx2� � K
00
2�x�
2!

� �j

� �K2�x��j � j�K2�x��jÿ1 �Dx� � K02�x� � �Dx2� � K
00
2�x�
2

� �
� j�jÿ 1�

2
�K2�x��jÿ2��Dx� � K02�x��2 �A-1�

Using Eqs. (1) and (A-1), one can express Ft�x� Dx� as the following:

Ft�x� Dx�

� exp�ÿK1�t�� � exp ÿK2�x�� � � exp ÿ�Dx� � K02�x� ÿ �Dx2� � K
00
2�x�
2

� �

�
X1
n�0

X1
j�n

�K1�t��n
n!

(
�K2�x��j

j!
�

j�K2�x��jÿ1 �Dx� � K02�x� � �Dx2� � K002�x�
2

h i
j!

�
j�jÿ1�

2 �K2�x��jÿ2 �Dx� � K02�x�
� �2

j!

)
�A-2�

We now temporarily focus our attention on the second item in the last braces of
(A-2). Recognizing the fact that sediment transport is unidirectional and using
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the mathematical description of the compound NHP process (Shen and
Todorovic, 1971), one can develop a concise form as follows:

exp ÿK1�t�� � � exp ÿK2�x�� � � exp ÿ�Dx� � K02�x� ÿ �Dx2� � K
00
2�x�
2

� �

�
X1
n�0

X1
j�n

K1�t�� �n
n!

j K2�x�� �jÿ1 �Dx� � K02�x� � �Dx2� � K002�x�
2

h i
j!

� exp�ÿa1 ÿ a2� � �a1 � a2� � exp ÿK1�t�� � � exp ÿK2�x�� �

� K1�t�� �0
0!

�
X1

p�ÿ1

K2�x�� �p
p!

�
X1
n�1

X1
q�nÿ1

K1�t�� �n
n!

K2�x�� �q
q!

( )

� exp�ÿa1 ÿ a2� � �a1 � a2� � P�Et0;t
0 � �

X1
n�1

P�Xnÿ1 � x�P�Et0;t
n �

" #
�A-3�

in which a1 and a2 are given in Table 1; Xnÿ1 is the distance traveled after making
nÿ 1 steps; Et0;t

0 and Et0;t
n are the events of making respectively 0 and n steps

within the period [t0; t].
Next, one can similarly simplify the expanded form associated with the third

item in the last braces of (A-2) as follows:

exp ÿK1�t�� � � exp ÿK2�x�� � � exp ÿ�Dx� � K02�x� ÿ �Dx2� � K
00
2�x�
2

� �
�
X1
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X1
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" #
�A-4�

where the de®nitions of the corresponding terms are similar to those provided
previously. Substituting Eqs. (1), (A-3) and (A-4) into Eq. (A-2) yields

Ft�x� Dx� � exp�ÿa1 ÿ a2�

� Ft�x� � �a1 � a2� � P�Et0;t
0 � �

X1
n�1

P�Xnÿ1 � x�P�Et0;t
n �

" #(

� a2
1

2
� P�Et0;t

0 � � P�Et0;t
1 � �

X1
n�2

P�Xnÿ2 � x�P�Et0;t
n �

" #)
�A-5�

Dividing (A-5) by Eq. (1) leads to Eq. (2). Following the same procedures by
replacing Dx with ÿDx, 2Dx, and ÿ2Dx, one can obtain Eqs. (3), (4), and (5),
respectively.
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Appendix B

1
Derivation of Eq. (9)
Based on the simpli®ed CDF given in Table 1, one can express the difference
between the second- and ®rst-order simpli®ed CDF as:

E
�1�
CDF � exp�ÿa1 ÿ a2� � 1� �a1 � a2� � b1 � 1

2
a2

1 � b2

� �� �
ÿ exp�ÿa1� � �1� a1 � b1�� � �B-1�

One can further substitute the exponential function with Maclaurin series
(Kreyszig, 1983) and rearrange Eq. (B-1) as a function of Dx, i.e.

E
�1�
CDF �

�
1ÿ a1 � a2

1

2
� O�a3

1�
� �

� 1ÿ a2 � a2
2

2
� O�a3

2�
� �

� 1� a1 � b1 � a2 � b1 � 1

2
a2

1 � b2

� ��
ÿ 1ÿ a1 � a2

1

2
� O�a3

1�
� �

� 1� a1 � b1� �
� �

� / � Dx2 � O�Dx3� �B-2�

in which

/ � b2

2
�K02�2 �

b1 ÿ 1

2
�K002�

2
Derivation of Eq. (10)
For the ®rst-order approximation method, a1 and b1 are solved from a system of
the following form (Wu and Shen, 1998):

Ft�x� Dx�
Ft�x�

� ��1�
� f1�a1; b1�

Ft�xÿ Dx�
Ft�x�

� ��1�
� f2�a1; b1�

�B-3�

in which the explicit form of f1�a1; b1� is shown in Table 1. From Eq. (B-2), one
also knows that the following relationships exist for suf®ciently small Dx:

Ft�x� Dx�
Ft�x�

� ��1�
� Ft�x� Dx�

Ft�x�
� ��1�

ÿ/ � Dx2

Ft�xÿ Dx�
Ft�x�

� ��1�
� Ft�xÿ Dx�

Ft�x�
� ��1�

ÿ/ � Dx2

�B-4�
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Given â1 and b̂1 are the ®rst two components of the close form solution to the
system of the in®nite-order simpli®ed CDF equations. Such system is theo-
retically possible as the number a, in Table 1, approaches to in®nity. By virtue
of Eq. (B-3), one can substitute the close form solution into Eq. (B-4) such
that

f1�â1; b̂1� � f̂1 � C1 ÿ /̂ � Dx2

f2�â1; b̂1� � f̂2 � C2 ÿ /̂ � Dx2
�B-5�

in which C1 and C2 are the exact magnitudes of Ft�x� Dx�=Ft�x� and
Ft�xÿ Dx�=Ft�x�, respectively; Eq. (B-2) gives /̂ � �b̂2�K02�2 � �b̂1 ÿ 1��K002��=2.

However, the problem we are practically dealing with is to seek solutions from
the following system of equations since C1 and C2 are determined from the
physical data.

f1�a�1�1 ; b
�1�
1 � � C1

f2�a�1�1 ; b
�1�
1 � � C2

or

f1�â1 � e�1�a ; b̂1 � e
�1�
b � � C1

f2�â1 � e�1�a ; b̂1 � e
�1�
b � � C2

�B-6�

where e
�1�
a and e

�1�
b are the errors between a

�1�
1 and â1, b

�1�
1 and b̂1, respectively.

With Eq. (B-5) and Taylor series, one can reform Eq. (B-6) into the following if
the ®rst-order terms of e

�1�
a and e

�1�
b are solely considered:

f̂1 �
of̂1

oâ1
� e�1�a �

of̂1
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� e�1�b � f̂1 � /̂ � Dx2
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oâ1
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� e�1�b � f̂2 � /̂ � Dx2

�B-7�

Solving (B-7) for e
�1�
a and e

�1�
b leads to

e�1�a � ĝ1 � Dx2

e
�1�
b � ĝ2 � Dx2

�B-8�

in which

ĝ1 �
�ÿ�of̂1=ob̂1� � �of̂2=ob̂1�� � /̂
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3
Derivation of Eq. (13)
By virtue of Eq. (B-8) and the de®nition of a1, one can write an equation relating

k�1�2 and k̂2:

k�1�2 � k̂2 � ĝ1 � Dx �B-9�
k�1�2 is substituted into Eq. (1) to evaluate the cumulative probability distribution
of sediment displacement, i.e.
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in which
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Z x

x0

k̂2�n� � Dx � ĝ1�n�
h i

dn

Substituting the exponential function in Eq. (B-10) with Maclaurin series and
expanding the last jth-power term leads to
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One can further simplify Eq. (B-11) as the following:
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in which
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