

1. Energy Eqn for Pipe Flow (滿 管)

 h_L 之水法:

0.009

0.008

8 10

2(104) 4

$$h_L = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g}$$

where *L*=Pipe length

D =Pipe diamater

f = Friction factor (dimensionless)

6 810

6 8

根據団次分析⇒ $f = fct(e, V, D, v) = fct\left(\frac{e}{D}, \frac{VD}{v}\right)$

Reynolds number, $N_R = \frac{DV}{r}$

2. Minor Losses (次 3 水 頭損 失)

Reasons:①Entrance(\□) ②Exit(出口) ③Enlargement(Expansion)(斷重擴大) ④Contraction(斷重 窄縮) ⑤Bends(營管) ⑥Elbows(營接頭) ⑦Valves(開閥門) ⑧Fittings(接管)

General form of minor losses : $h_L = k \cdot \frac{V^2}{2g}$

 \bigcirc Head Loss at Entrance (h_e)

$$h_e = k_e \cdot \frac{V^2}{2g}$$

 \bigcirc Head Loss at Exit (h_x)

$$h_x = \frac{V^2}{2g}$$

⁽³⁾Head Loss due to Contraction (h_c)

Abrupt contraction (究 縮)

A_2 / A_1	0	0.2	0.4	0.6	0.8	1.0
k _c	0.5	0.41	0.30	0.18	0.06	0

Gradual contraction (緩縮)

 $k_c \approx 0.05 \sim 0.10$

(4) Head Loss due to Enlargement (h_l)

$$h_l = \frac{(V_1 - V_2)^2}{2g} \qquad \Rightarrow \quad k_l = 1$$

 θ **Fig. 9.15** Loss coefficients for conical enlargements.¹³ (Source: A. H. Gibson, Hydraulics and its Applications, 4th ed., 1930.)

$$h_l = k_l \cdot \frac{(V_1 - V_2)^2}{2g}$$

(SHead Loss at Bends (h_b)

Fig. 9.20 Itō's loss coefficients for smooth bends ($\mathbf{R} = 200\ 000$).

$$h_b = k_b \cdot \frac{V^2}{2g}$$

Head Loss at Pipe Fittings (h_t)

$$h_t = k_t \cdot \frac{V^2}{2g}$$

Fitting	k_t
①Valve, wide-open	
Globe (球閥)	10
Angle (牟 閥)	2
Gate (門閥)	0.2
②Elbow (彎接頭)	
90°	1.5
45°	0.4
③Return bend (迎 彎 管)	1.5
④Tees (T分管)	2

• Total Head Loss (h_T)

$$\begin{split} h_T &= h_e + h_x + h_L + h_c + h_l + h_b + h_l \\ &= \chi \ \mathfrak{n} + \mathfrak{h} \ \mathfrak{n} + \mathfrak{E} \ \mathfrak{K} + \mathfrak{F} \ \mathfrak{k} + \mathfrak{k} \ \mathfrak{k} + \mathfrak{K} \\ &= \left(k_e + 1 + f \cdot \frac{L}{D} + k_b + k_l \right) \frac{V^2}{2g} + k_c \cdot \frac{V_2^2}{2g} + k_l \cdot \frac{(V_1 - V_2)^2}{2g} \end{split}$$

the pipe entrance to where the wall shear stress (and thus the friction factor) reaches within about 2 percent of the fully developed value.

Hydrodynamic entrance region: The region from the pipe inlet to the point at which the boundary layer merges at the centerline.

Hydrodynamic entry length L_h : The length of this region.

Hydrodynamically developing flow: Flow in the entrance region. This is the region where the velocity profile develops.

Hydrodynamically fully developed region: The region beyond the entrance region in which the velocity profile is fully developed and remains unchanged.

Hydrodynamically fully developed

$$\frac{\partial u(r, x)}{\partial x} = 0 \quad \rightarrow \quad u = u(r)$$

In the fully developed flow region of a pipe, the velocity profile does not change downstream, and thus the wall shear stress remains constant as well.

Fully Developed Velocity Profiles: Laminar & Turbulent Flows

Entry Lengths

The hydrodynamic entry length is usually taken to be the distance from the pipe entrance to where the wall shear stress (and thus the friction factor) reaches within about 2 percent of the fully developed value.

• **Theorem 1 Constant of Co**