

1. Energy Eqn for Pipe Flow (滿管**)**

 h_{L} 之 求 法:

$$
h_L = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g}
$$

where *L*=Pipe length

D =Pipe diamater

f =Friction factor (dimensionless)

根據団次分析⇒ $f = fct(e, V, D, v) = fct\left[\frac{e}{D}, \frac{V D}{L}\right]$ $\bigg)$ $\left(\frac{e}{R}, \frac{VD}{R}\right)$ \setminus $= fct\left(\frac{e}{D}, \frac{VI}{V}\right)$ *VD D* $fct\left(\frac{e}{\sqrt{e}},\right)$ *f* 可由Moody diagram (慕迪圖, p.348)查得

2. Minor Losses (次要水頭損失**)**

Reasons: \mathcal{O} Entrance (λ σ) \oslash Exit $(\nexists \neg \Box$ **③Enlargement (Expansion) (斷面擴大) 40Contraction** (斷面窄縮) gBends (彎管) hElbows (彎接頭) iValves (閘閥門) **⑧Fittings** (接管)

General form of minor losses: $h_L = k \cdot \frac{V^2}{2g}$ $= k \cdot \frac{r}{2}$

OHead Loss at Entrance (h_e)

$$
h_e = k_e \cdot \frac{V^2}{2g}
$$

 \oslash Head Loss at Exit (h_x)

$$
h_x = \frac{V^2}{2g}
$$

Example 2 Head Loss due to Contraction (h_c)

Abrupt contraction (突縮)

Gradual contraction (緩縮)

 $k_c \approx 0.05 \sim 0.10$

 \oplus Head Loss due to Enlargement (h_l)

$$
h_l = \frac{(V_1 - V_2)^2}{2g} \qquad \Rightarrow \qquad k_l = 1
$$

Fig. 9.15 Loss coefficients for conical enlargements.¹³ (Source: A. H. Gibson, Hydraulics and its Applications, 4th ed., 1930.)

$$
h_l = k_l \cdot \frac{(V_1 - V_2)^2}{2g}
$$

GHead Loss at Bends (h_b)

Fig. 9.20 Itō's loss coefficients for smooth bends ($\mathbf{R} = 200\,000$).

$$
h_b = k_b \cdot \frac{V^2}{2g}
$$

*C***Head Loss at Pipe Fittings (***h_t***)**

$$
h_t = k_t \cdot \frac{V^2}{2g}
$$

 \bullet Total Head Loss (h_T)

$$
h_T = h_e + h_x + h_L + h_c + h_l + h_b + h_l
$$

= λ σ + μ σ + ϕ σ σ + ϕ σ σ + ϕ σ σ

factor) reaches within about 2 percent of the fully developed value.

Hydrodynamic entrance region: The region from the pipe inlet to the point at which the boundary layer merges at the centerline.

Hydrodynamic entry length L_h **: The length of this region.**

Hydrodynamically developing flow: Flow in the entrance region. This is the region where the velocity profile develops.

Hydrodynamically fully developed region: The region beyond the entrance region in which the velocity profile is fully developed and remains unchanged.

Hydrodynamically fully developed

$$
\frac{\partial u(r, x)}{\partial x} = 0 \quad \to \quad u = u(r)
$$

In the fully developed flow region of a pipe, the velocity profile does not change downstream, and thus the wall shear stress τ_w **remains constant as well.**

Fully Developed Velocity Profiles: Laminar & Turbulent Flows

Entry Lengths

The hydrodynamic entry length is usually taken to be the distance from the pipe entrance to where the wall shear stress (and thus the friction factor) reaches within about 2 percent of the fully developed value.

\n- \n**Total Head Loss** (*h*_T)\n
$$
h_T = h_e + h_x + \left[h_f + h_b + h_t + h_c + h_l\right]
$$
\n
$$
= \lambda \Box + \Box + \frac{\omega}{2} \mathbf{E} + \mathbf{
$$